Convex-area-wise Linear Regression and Algorithms for Data Analysis
This paper introduces a new type of regression methodology named as Convex-Area-Wise Linear Regression(CALR), which separates given datasets by disjoint convex areas and fits different linear regression models for different areas. This regression model is highly interpretable, and it is able to inte...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-06 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Lyu, Bohan Li, Jianzhong |
description | This paper introduces a new type of regression methodology named as Convex-Area-Wise Linear Regression(CALR), which separates given datasets by disjoint convex areas and fits different linear regression models for different areas. This regression model is highly interpretable, and it is able to interpolate any given datasets, even when the underlying relationship between explanatory and response variables are non-linear and discontinuous. In order to solve CALR problem, 3 accurate algorithms are proposed under different assumptions. The analysis of correctness and time complexity of the algorithms are given, indicating that the problem can be solved in \(o(n^2)\) time accurately when the input datasets have some special features. Besides, this paper introduces an equivalent mixed integer programming problem of CALR which can be approximately solved using existing optimization solvers. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3066577227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3066577227</sourcerecordid><originalsourceid>FETCH-proquest_journals_30665772273</originalsourceid><addsrcrecordid>eNqNyr0KwjAQAOAgCBbtOwScAzGxjWupioOTuJeDXmtKTfSu9eftdfABnL7lm4jEWLtSm7UxM5Eyd1prkzuTZTYRZRnDA18KCEE9PaM8-oBA8oQtIbOPQUKoZdG3kfxwubJsIsktDCCLAP2bPS_EtIGeMf05F8v97lwe1I3ifUQeqi6O9M1cWZ3nmXPGOPvf-gDaITnu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066577227</pqid></control><display><type>article</type><title>Convex-area-wise Linear Regression and Algorithms for Data Analysis</title><source>Free E- Journals</source><creator>Lyu, Bohan ; Li, Jianzhong</creator><creatorcontrib>Lyu, Bohan ; Li, Jianzhong</creatorcontrib><description>This paper introduces a new type of regression methodology named as Convex-Area-Wise Linear Regression(CALR), which separates given datasets by disjoint convex areas and fits different linear regression models for different areas. This regression model is highly interpretable, and it is able to interpolate any given datasets, even when the underlying relationship between explanatory and response variables are non-linear and discontinuous. In order to solve CALR problem, 3 accurate algorithms are proposed under different assumptions. The analysis of correctness and time complexity of the algorithms are given, indicating that the problem can be solved in \(o(n^2)\) time accurately when the input datasets have some special features. Besides, this paper introduces an equivalent mixed integer programming problem of CALR which can be approximately solved using existing optimization solvers.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Data analysis ; Datasets ; Integer programming ; Mixed integer ; Regression models</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Lyu, Bohan</creatorcontrib><creatorcontrib>Li, Jianzhong</creatorcontrib><title>Convex-area-wise Linear Regression and Algorithms for Data Analysis</title><title>arXiv.org</title><description>This paper introduces a new type of regression methodology named as Convex-Area-Wise Linear Regression(CALR), which separates given datasets by disjoint convex areas and fits different linear regression models for different areas. This regression model is highly interpretable, and it is able to interpolate any given datasets, even when the underlying relationship between explanatory and response variables are non-linear and discontinuous. In order to solve CALR problem, 3 accurate algorithms are proposed under different assumptions. The analysis of correctness and time complexity of the algorithms are given, indicating that the problem can be solved in \(o(n^2)\) time accurately when the input datasets have some special features. Besides, this paper introduces an equivalent mixed integer programming problem of CALR which can be approximately solved using existing optimization solvers.</description><subject>Algorithms</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Integer programming</subject><subject>Mixed integer</subject><subject>Regression models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0KwjAQAOAgCBbtOwScAzGxjWupioOTuJeDXmtKTfSu9eftdfABnL7lm4jEWLtSm7UxM5Eyd1prkzuTZTYRZRnDA18KCEE9PaM8-oBA8oQtIbOPQUKoZdG3kfxwubJsIsktDCCLAP2bPS_EtIGeMf05F8v97lwe1I3ifUQeqi6O9M1cWZ3nmXPGOPvf-gDaITnu</recordid><startdate>20240609</startdate><enddate>20240609</enddate><creator>Lyu, Bohan</creator><creator>Li, Jianzhong</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240609</creationdate><title>Convex-area-wise Linear Regression and Algorithms for Data Analysis</title><author>Lyu, Bohan ; Li, Jianzhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30665772273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Integer programming</topic><topic>Mixed integer</topic><topic>Regression models</topic><toplevel>online_resources</toplevel><creatorcontrib>Lyu, Bohan</creatorcontrib><creatorcontrib>Li, Jianzhong</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyu, Bohan</au><au>Li, Jianzhong</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Convex-area-wise Linear Regression and Algorithms for Data Analysis</atitle><jtitle>arXiv.org</jtitle><date>2024-06-09</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This paper introduces a new type of regression methodology named as Convex-Area-Wise Linear Regression(CALR), which separates given datasets by disjoint convex areas and fits different linear regression models for different areas. This regression model is highly interpretable, and it is able to interpolate any given datasets, even when the underlying relationship between explanatory and response variables are non-linear and discontinuous. In order to solve CALR problem, 3 accurate algorithms are proposed under different assumptions. The analysis of correctness and time complexity of the algorithms are given, indicating that the problem can be solved in \(o(n^2)\) time accurately when the input datasets have some special features. Besides, this paper introduces an equivalent mixed integer programming problem of CALR which can be approximately solved using existing optimization solvers.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3066577227 |
source | Free E- Journals |
subjects | Algorithms Data analysis Datasets Integer programming Mixed integer Regression models |
title | Convex-area-wise Linear Regression and Algorithms for Data Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A19%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Convex-area-wise%20Linear%20Regression%20and%20Algorithms%20for%20Data%20Analysis&rft.jtitle=arXiv.org&rft.au=Lyu,%20Bohan&rft.date=2024-06-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3066577227%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066577227&rft_id=info:pmid/&rfr_iscdi=true |