Leveraging Vision Transformers for Detecting Porosity in Wind Energy Composites

The structural robustness and operational efficiency of wind turbine rotor blades are crucial for the overall effectiveness of wind energy systems, often constructed with fiber-reinforced polymers (FRPs) and adhesives. However, porosity within these materials poses a significant threat, weakening st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2024-06, Vol.2767 (5), p.052044
Hauptverfasser: Khan, AW, Balzani, C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 052044
container_title Journal of physics. Conference series
container_volume 2767
creator Khan, AW
Balzani, C
description The structural robustness and operational efficiency of wind turbine rotor blades are crucial for the overall effectiveness of wind energy systems, often constructed with fiber-reinforced polymers (FRPs) and adhesives. However, porosity within these materials poses a significant threat, weakening structural strength and effectiveness. Air pockets lead to stress concentration points, reducing load-carrying capacity and elevating the risk of blade failure, especially under dynamic wind loads. Manual detection of these air pockets is laborious, necessitating automated inspection techniques. Advanced imaging technologies, such as computed tomography (CT) scanning and deep learning, hold promise for identifying and quantifying porosity in FRPs and adhesives, reducing labor while enhancing accuracy. The study introduces a transformer-based model for porosity detection, departing from convolution-based methods, emphasizing the incorporation of global context throughout the network. Leveraging Vision Transformer (ViT) framework advances, the model is applied to porosity segmentation in wind energy blades, showing promising results with limited datasets. The prospect of using larger datasets suggests potential for a versatile solution in segmenting porosity or voids in various wind energy blade composites, including adhesives.
doi_str_mv 10.1088/1742-6596/2767/5/052044
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_3066471927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3066471927</sourcerecordid><originalsourceid>FETCH-LOGICAL-i241t-e64120dfdd677e30f97dd37cfa085f676fc653987e9f81505f8f3baaa5dac9863</originalsourceid><addsrcrecordid>eNptkF1LwzAUhoMoOKe_wYB3Qm3SNB-9lLr5wWADp16G2CQjwyU16YT9e1smE8Fz8x44zzkHHgAuMbrBSIgc87LIGK1YXnDGc5ojWqCyPAKjw-T40AtxCs5SWiNE-uIjMJ-ZLxPVyvkVfHXJBQ-XUflkQ9yYmGCf8M50pukGYhFiSK7bQefhm_MaTryJqx2sw6YdBiadgxOrPpK5-MkxeJlOlvVDNpvfP9a3s8wVJe4yw0pcIG21ZpwbgmzFtSa8sQoJahlntmGUVIKbygpMEbXCknelFNWqqQQjY3C1v9vG8Lk1qZPrsI2-fykJYqzkuCp4T13vKRfaX-BpUT_LQZakci9Lttr2MPkHxkgOmuUgUA4y_26SbxKMb1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066471927</pqid></control><display><type>article</type><title>Leveraging Vision Transformers for Detecting Porosity in Wind Energy Composites</title><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Khan, AW ; Balzani, C</creator><creatorcontrib>Khan, AW ; Balzani, C</creatorcontrib><description>The structural robustness and operational efficiency of wind turbine rotor blades are crucial for the overall effectiveness of wind energy systems, often constructed with fiber-reinforced polymers (FRPs) and adhesives. However, porosity within these materials poses a significant threat, weakening structural strength and effectiveness. Air pockets lead to stress concentration points, reducing load-carrying capacity and elevating the risk of blade failure, especially under dynamic wind loads. Manual detection of these air pockets is laborious, necessitating automated inspection techniques. Advanced imaging technologies, such as computed tomography (CT) scanning and deep learning, hold promise for identifying and quantifying porosity in FRPs and adhesives, reducing labor while enhancing accuracy. The study introduces a transformer-based model for porosity detection, departing from convolution-based methods, emphasizing the incorporation of global context throughout the network. Leveraging Vision Transformer (ViT) framework advances, the model is applied to porosity segmentation in wind energy blades, showing promising results with limited datasets. The prospect of using larger datasets suggests potential for a versatile solution in segmenting porosity or voids in various wind energy blade composites, including adhesives.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2767/5/052044</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Adhesives ; Air pockets ; Bearing strength ; Composite materials ; Computed tomography ; Datasets ; Fiber reinforced plastics ; Fiber reinforced polymers ; Load carrying capacity ; Porosity ; Rotor blades ; Rotor blades (turbomachinery) ; Stress concentration ; Structural strength ; System effectiveness ; Wind loads ; Wind power ; Wind turbines</subject><ispartof>Journal of physics. Conference series, 2024-06, Vol.2767 (5), p.052044</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/2767/5/052044/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Khan, AW</creatorcontrib><creatorcontrib>Balzani, C</creatorcontrib><title>Leveraging Vision Transformers for Detecting Porosity in Wind Energy Composites</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>The structural robustness and operational efficiency of wind turbine rotor blades are crucial for the overall effectiveness of wind energy systems, often constructed with fiber-reinforced polymers (FRPs) and adhesives. However, porosity within these materials poses a significant threat, weakening structural strength and effectiveness. Air pockets lead to stress concentration points, reducing load-carrying capacity and elevating the risk of blade failure, especially under dynamic wind loads. Manual detection of these air pockets is laborious, necessitating automated inspection techniques. Advanced imaging technologies, such as computed tomography (CT) scanning and deep learning, hold promise for identifying and quantifying porosity in FRPs and adhesives, reducing labor while enhancing accuracy. The study introduces a transformer-based model for porosity detection, departing from convolution-based methods, emphasizing the incorporation of global context throughout the network. Leveraging Vision Transformer (ViT) framework advances, the model is applied to porosity segmentation in wind energy blades, showing promising results with limited datasets. The prospect of using larger datasets suggests potential for a versatile solution in segmenting porosity or voids in various wind energy blade composites, including adhesives.</description><subject>Adhesives</subject><subject>Air pockets</subject><subject>Bearing strength</subject><subject>Composite materials</subject><subject>Computed tomography</subject><subject>Datasets</subject><subject>Fiber reinforced plastics</subject><subject>Fiber reinforced polymers</subject><subject>Load carrying capacity</subject><subject>Porosity</subject><subject>Rotor blades</subject><subject>Rotor blades (turbomachinery)</subject><subject>Stress concentration</subject><subject>Structural strength</subject><subject>System effectiveness</subject><subject>Wind loads</subject><subject>Wind power</subject><subject>Wind turbines</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkF1LwzAUhoMoOKe_wYB3Qm3SNB-9lLr5wWADp16G2CQjwyU16YT9e1smE8Fz8x44zzkHHgAuMbrBSIgc87LIGK1YXnDGc5ojWqCyPAKjw-T40AtxCs5SWiNE-uIjMJ-ZLxPVyvkVfHXJBQ-XUflkQ9yYmGCf8M50pukGYhFiSK7bQefhm_MaTryJqx2sw6YdBiadgxOrPpK5-MkxeJlOlvVDNpvfP9a3s8wVJe4yw0pcIG21ZpwbgmzFtSa8sQoJahlntmGUVIKbygpMEbXCknelFNWqqQQjY3C1v9vG8Lk1qZPrsI2-fykJYqzkuCp4T13vKRfaX-BpUT_LQZakci9Lttr2MPkHxkgOmuUgUA4y_26SbxKMb1g</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Khan, AW</creator><creator>Balzani, C</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20240601</creationdate><title>Leveraging Vision Transformers for Detecting Porosity in Wind Energy Composites</title><author>Khan, AW ; Balzani, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i241t-e64120dfdd677e30f97dd37cfa085f676fc653987e9f81505f8f3baaa5dac9863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adhesives</topic><topic>Air pockets</topic><topic>Bearing strength</topic><topic>Composite materials</topic><topic>Computed tomography</topic><topic>Datasets</topic><topic>Fiber reinforced plastics</topic><topic>Fiber reinforced polymers</topic><topic>Load carrying capacity</topic><topic>Porosity</topic><topic>Rotor blades</topic><topic>Rotor blades (turbomachinery)</topic><topic>Stress concentration</topic><topic>Structural strength</topic><topic>System effectiveness</topic><topic>Wind loads</topic><topic>Wind power</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, AW</creatorcontrib><creatorcontrib>Balzani, C</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, AW</au><au>Balzani, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leveraging Vision Transformers for Detecting Porosity in Wind Energy Composites</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>2767</volume><issue>5</issue><spage>052044</spage><pages>052044-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The structural robustness and operational efficiency of wind turbine rotor blades are crucial for the overall effectiveness of wind energy systems, often constructed with fiber-reinforced polymers (FRPs) and adhesives. However, porosity within these materials poses a significant threat, weakening structural strength and effectiveness. Air pockets lead to stress concentration points, reducing load-carrying capacity and elevating the risk of blade failure, especially under dynamic wind loads. Manual detection of these air pockets is laborious, necessitating automated inspection techniques. Advanced imaging technologies, such as computed tomography (CT) scanning and deep learning, hold promise for identifying and quantifying porosity in FRPs and adhesives, reducing labor while enhancing accuracy. The study introduces a transformer-based model for porosity detection, departing from convolution-based methods, emphasizing the incorporation of global context throughout the network. Leveraging Vision Transformer (ViT) framework advances, the model is applied to porosity segmentation in wind energy blades, showing promising results with limited datasets. The prospect of using larger datasets suggests potential for a versatile solution in segmenting porosity or voids in various wind energy blade composites, including adhesives.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2767/5/052044</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2024-06, Vol.2767 (5), p.052044
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_3066471927
source Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adhesives
Air pockets
Bearing strength
Composite materials
Computed tomography
Datasets
Fiber reinforced plastics
Fiber reinforced polymers
Load carrying capacity
Porosity
Rotor blades
Rotor blades (turbomachinery)
Stress concentration
Structural strength
System effectiveness
Wind loads
Wind power
Wind turbines
title Leveraging Vision Transformers for Detecting Porosity in Wind Energy Composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T06%3A48%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leveraging%20Vision%20Transformers%20for%20Detecting%20Porosity%20in%20Wind%20Energy%20Composites&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Khan,%20AW&rft.date=2024-06-01&rft.volume=2767&rft.issue=5&rft.spage=052044&rft.pages=052044-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2767/5/052044&rft_dat=%3Cproquest_iop_j%3E3066471927%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066471927&rft_id=info:pmid/&rfr_iscdi=true