Second order linear differential equations with a basis of solutions having only real zeros

Let A be a transcendental entire function of finite order. We show that, if the differential equation w ″ + Aw = 0 has two linearly independent solutions with only real zeros, then the order of A must be an odd integer or one half of an odd integer. Moreover, A has completely regular growth in the s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal d'analyse mathématique (Jerusalem) 2024, Vol.152 (1), p.53-108
Hauptverfasser: Bergweiler, Walter, Eremenko, Alexandre, Rempe, Lasse
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 108
container_issue 1
container_start_page 53
container_title Journal d'analyse mathématique (Jerusalem)
container_volume 152
creator Bergweiler, Walter
Eremenko, Alexandre
Rempe, Lasse
description Let A be a transcendental entire function of finite order. We show that, if the differential equation w ″ + Aw = 0 has two linearly independent solutions with only real zeros, then the order of A must be an odd integer or one half of an odd integer. Moreover, A has completely regular growth in the sense of Levin and Pfluger. These results follow from a more general geometric theorem, which classifies symmetric local homeomorphisms from the plane to the sphere for which all zeros and poles lie on the real axis, and which have only finitely many singularities over finite non-zero values.
doi_str_mv 10.1007/s11854-023-0294-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3066440841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3066440841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-b1d4d943434630c932cbe0e39847136f61d0ca9ea772bc0200d561f4ea8314de3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Bz9VJk6btURb_wYIH9eQhpM10N0tNdpNWcT-9WSp4kmGYw7zfzOMRcsngmgGUN5GxqhAZ5Dx1LbL9EZmxQhZZVfDqmMwAcpaVsoRTchbjBqAoap7PyPsLtt4Z6oPBQHvrUAdqbNdhQDdY3VPcjXqw3kX6ZYc11bTR0UbqOxp9P06btf60bkW9679pwATtMfh4Tk463Ue8-J1z8nZ_97p4zJbPD0-L22XWcsaGrGFGmFrwVJJDm2y1DQLyuhIl47KTzECra9RlmTct5ACmkKwTqCvOhEE-J1fT3W3wuxHjoDZ-DC69VBykFAIqwZKKTao2WYsBO7UN9kOHb8VAHTJUU4YqZagOGap9YvKJiUnrVhj-Lv8P_QA_wXUZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066440841</pqid></control><display><type>article</type><title>Second order linear differential equations with a basis of solutions having only real zeros</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bergweiler, Walter ; Eremenko, Alexandre ; Rempe, Lasse</creator><creatorcontrib>Bergweiler, Walter ; Eremenko, Alexandre ; Rempe, Lasse</creatorcontrib><description>Let A be a transcendental entire function of finite order. We show that, if the differential equation w ″ + Aw = 0 has two linearly independent solutions with only real zeros, then the order of A must be an odd integer or one half of an odd integer. Moreover, A has completely regular growth in the sense of Levin and Pfluger. These results follow from a more general geometric theorem, which classifies symmetric local homeomorphisms from the plane to the sphere for which all zeros and poles lie on the real axis, and which have only finitely many singularities over finite non-zero values.</description><identifier>ISSN: 0021-7670</identifier><identifier>EISSN: 1565-8538</identifier><identifier>DOI: 10.1007/s11854-023-0294-z</identifier><language>eng</language><publisher>Jerusalem: The Hebrew University Magnes Press</publisher><subject>Abstract Harmonic Analysis ; Analysis ; Differential equations ; Dynamical Systems and Ergodic Theory ; Entire functions ; Functional Analysis ; Integers ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations ; Topology</subject><ispartof>Journal d'analyse mathématique (Jerusalem), 2024, Vol.152 (1), p.53-108</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-b1d4d943434630c932cbe0e39847136f61d0ca9ea772bc0200d561f4ea8314de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11854-023-0294-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11854-023-0294-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Bergweiler, Walter</creatorcontrib><creatorcontrib>Eremenko, Alexandre</creatorcontrib><creatorcontrib>Rempe, Lasse</creatorcontrib><title>Second order linear differential equations with a basis of solutions having only real zeros</title><title>Journal d'analyse mathématique (Jerusalem)</title><addtitle>JAMA</addtitle><description>Let A be a transcendental entire function of finite order. We show that, if the differential equation w ″ + Aw = 0 has two linearly independent solutions with only real zeros, then the order of A must be an odd integer or one half of an odd integer. Moreover, A has completely regular growth in the sense of Levin and Pfluger. These results follow from a more general geometric theorem, which classifies symmetric local homeomorphisms from the plane to the sphere for which all zeros and poles lie on the real axis, and which have only finitely many singularities over finite non-zero values.</description><subject>Abstract Harmonic Analysis</subject><subject>Analysis</subject><subject>Differential equations</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Entire functions</subject><subject>Functional Analysis</subject><subject>Integers</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><subject>Topology</subject><issn>0021-7670</issn><issn>1565-8538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG8Bz9VJk6btURb_wYIH9eQhpM10N0tNdpNWcT-9WSp4kmGYw7zfzOMRcsngmgGUN5GxqhAZ5Dx1LbL9EZmxQhZZVfDqmMwAcpaVsoRTchbjBqAoap7PyPsLtt4Z6oPBQHvrUAdqbNdhQDdY3VPcjXqw3kX6ZYc11bTR0UbqOxp9P06btf60bkW9679pwATtMfh4Tk463Ue8-J1z8nZ_97p4zJbPD0-L22XWcsaGrGFGmFrwVJJDm2y1DQLyuhIl47KTzECra9RlmTct5ACmkKwTqCvOhEE-J1fT3W3wuxHjoDZ-DC69VBykFAIqwZKKTao2WYsBO7UN9kOHb8VAHTJUU4YqZagOGap9YvKJiUnrVhj-Lv8P_QA_wXUZ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Bergweiler, Walter</creator><creator>Eremenko, Alexandre</creator><creator>Rempe, Lasse</creator><general>The Hebrew University Magnes Press</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2024</creationdate><title>Second order linear differential equations with a basis of solutions having only real zeros</title><author>Bergweiler, Walter ; Eremenko, Alexandre ; Rempe, Lasse</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-b1d4d943434630c932cbe0e39847136f61d0ca9ea772bc0200d561f4ea8314de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Analysis</topic><topic>Differential equations</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Entire functions</topic><topic>Functional Analysis</topic><topic>Integers</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bergweiler, Walter</creatorcontrib><creatorcontrib>Eremenko, Alexandre</creatorcontrib><creatorcontrib>Rempe, Lasse</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal d'analyse mathématique (Jerusalem)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bergweiler, Walter</au><au>Eremenko, Alexandre</au><au>Rempe, Lasse</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Second order linear differential equations with a basis of solutions having only real zeros</atitle><jtitle>Journal d'analyse mathématique (Jerusalem)</jtitle><stitle>JAMA</stitle><date>2024</date><risdate>2024</risdate><volume>152</volume><issue>1</issue><spage>53</spage><epage>108</epage><pages>53-108</pages><issn>0021-7670</issn><eissn>1565-8538</eissn><abstract>Let A be a transcendental entire function of finite order. We show that, if the differential equation w ″ + Aw = 0 has two linearly independent solutions with only real zeros, then the order of A must be an odd integer or one half of an odd integer. Moreover, A has completely regular growth in the sense of Levin and Pfluger. These results follow from a more general geometric theorem, which classifies symmetric local homeomorphisms from the plane to the sphere for which all zeros and poles lie on the real axis, and which have only finitely many singularities over finite non-zero values.</abstract><cop>Jerusalem</cop><pub>The Hebrew University Magnes Press</pub><doi>10.1007/s11854-023-0294-z</doi><tpages>56</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-7670
ispartof Journal d'analyse mathématique (Jerusalem), 2024, Vol.152 (1), p.53-108
issn 0021-7670
1565-8538
language eng
recordid cdi_proquest_journals_3066440841
source SpringerLink Journals - AutoHoldings
subjects Abstract Harmonic Analysis
Analysis
Differential equations
Dynamical Systems and Ergodic Theory
Entire functions
Functional Analysis
Integers
Mathematics
Mathematics and Statistics
Partial Differential Equations
Topology
title Second order linear differential equations with a basis of solutions having only real zeros
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T06%3A28%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Second%20order%20linear%20differential%20equations%20with%20a%20basis%20of%20solutions%20having%20only%20real%20zeros&rft.jtitle=Journal%20d'analyse%20math%C3%A9matique%20(Jerusalem)&rft.au=Bergweiler,%20Walter&rft.date=2024&rft.volume=152&rft.issue=1&rft.spage=53&rft.epage=108&rft.pages=53-108&rft.issn=0021-7670&rft.eissn=1565-8538&rft_id=info:doi/10.1007/s11854-023-0294-z&rft_dat=%3Cproquest_cross%3E3066440841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066440841&rft_id=info:pmid/&rfr_iscdi=true