The difference of model robustness assessment using cross‐validation and bootstrap methods

The validation principles on Quantitative Structure Activity Relationship issued by Organization for Economic and Co‐operation and Development describe three criteria of model assessment: goodness of fit, robustness and prediction. In the case of robustness, two ways are possible as internal validat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemometrics 2024-06, Vol.38 (6), p.n/a
Hauptverfasser: Lasfar, Rita, Tóth, Gergely
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page
container_title Journal of chemometrics
container_volume 38
creator Lasfar, Rita
Tóth, Gergely
description The validation principles on Quantitative Structure Activity Relationship issued by Organization for Economic and Co‐operation and Development describe three criteria of model assessment: goodness of fit, robustness and prediction. In the case of robustness, two ways are possible as internal validation: bootstrap and cross‐validation. We compared these validation metrics by checking their sample size dependence, rank correlations to other metrics and uncertainty. We used modeling methods from multivariate linear regression to artificial neural network on 14 open access datasets. We found that the metrics provide similar sample size dependence and correlation to other validation parameters. The individual uncertainty originating from the calculation recipes of the metrics is much smaller for both ways than the part caused by the selection of the training set or the training/test split. We concluded that the metrics of the two techniques are interchangeable, but the interpretation of cross‐validation parameters is easier according to their similar range to goodness‐of‐fit and prediction metrics. Furthermore, the variance originating from the random elements of the calculation of cross‐validation metrics is slightly smaller than those of bootstrap ones, if equal calculation load is applied. The two methods provide close to the same information on robustness, but we suggest to use cross‐validation, because: a) Bootstrap values are outliers within the metrics for other validation tasks as goodness‐of‐fit or predictivity. b) The uncertainty of the robustness calculation is smaller for cross‐validation at equal calculation load.
doi_str_mv 10.1002/cem.3530
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3066183037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3066183037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2540-abb95553d547fcd0a64ac1b36c8aee8aaa3e8cb717d09b1f00bb141458c4b253</originalsourceid><addsrcrecordid>eNp10L1OwzAQB3ALgUQpSDyCJRaWlHMcJ86IqvIhFbF0YECy_HGhqZq42AmoG4_AM_IkpC0r03-4n-5Of0IuGUwYQHpjsZlwweGIjBiUZcJS-XJMRiBlnpRc8lNyFuMKYJjxbEReF0ukrq4qDNhapL6ijXe4psGbPnYtxkh1jEM02Ha0j3X7Rm3wMf58fX_ode10V_uW6tZR430Xu6A3tMFu6V08JyeVXke8-MsxWdzNFtOHZP58_zi9nSc2FRkk2phSCMGdyIrKOtB5pi0zPLdSI0qtNUdpTcEKB6VhFYAxLGOZkDYzqeBjcnVYuwn-vcfYqZXvQztcVBzynEkOvBjU9UHtvw9YqU2oGx22ioHaVaeG6tSuuoEmB_pZr3H7r1PT2dPe_wIVy3JP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066183037</pqid></control><display><type>article</type><title>The difference of model robustness assessment using cross‐validation and bootstrap methods</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Lasfar, Rita ; Tóth, Gergely</creator><creatorcontrib>Lasfar, Rita ; Tóth, Gergely</creatorcontrib><description>The validation principles on Quantitative Structure Activity Relationship issued by Organization for Economic and Co‐operation and Development describe three criteria of model assessment: goodness of fit, robustness and prediction. In the case of robustness, two ways are possible as internal validation: bootstrap and cross‐validation. We compared these validation metrics by checking their sample size dependence, rank correlations to other metrics and uncertainty. We used modeling methods from multivariate linear regression to artificial neural network on 14 open access datasets. We found that the metrics provide similar sample size dependence and correlation to other validation parameters. The individual uncertainty originating from the calculation recipes of the metrics is much smaller for both ways than the part caused by the selection of the training set or the training/test split. We concluded that the metrics of the two techniques are interchangeable, but the interpretation of cross‐validation parameters is easier according to their similar range to goodness‐of‐fit and prediction metrics. Furthermore, the variance originating from the random elements of the calculation of cross‐validation metrics is slightly smaller than those of bootstrap ones, if equal calculation load is applied. The two methods provide close to the same information on robustness, but we suggest to use cross‐validation, because: a) Bootstrap values are outliers within the metrics for other validation tasks as goodness‐of‐fit or predictivity. b) The uncertainty of the robustness calculation is smaller for cross‐validation at equal calculation load.</description><identifier>ISSN: 0886-9383</identifier><identifier>EISSN: 1099-128X</identifier><identifier>DOI: 10.1002/cem.3530</identifier><language>eng</language><publisher>Chichester: Wiley Subscription Services, Inc</publisher><subject>ANN ; Artificial neural networks ; Goodness of fit ; MLR ; model validation ; Parameter uncertainty ; PLS ; Robustness ; Statistical analysis ; Statistical methods ; SVR ; XGBOOST</subject><ispartof>Journal of chemometrics, 2024-06, Vol.38 (6), p.n/a</ispartof><rights>2024 John Wiley &amp; Sons Ltd.</rights><rights>2024 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2540-abb95553d547fcd0a64ac1b36c8aee8aaa3e8cb717d09b1f00bb141458c4b253</cites><orcidid>0000-0002-5146-5700</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcem.3530$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcem.3530$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Lasfar, Rita</creatorcontrib><creatorcontrib>Tóth, Gergely</creatorcontrib><title>The difference of model robustness assessment using cross‐validation and bootstrap methods</title><title>Journal of chemometrics</title><description>The validation principles on Quantitative Structure Activity Relationship issued by Organization for Economic and Co‐operation and Development describe three criteria of model assessment: goodness of fit, robustness and prediction. In the case of robustness, two ways are possible as internal validation: bootstrap and cross‐validation. We compared these validation metrics by checking their sample size dependence, rank correlations to other metrics and uncertainty. We used modeling methods from multivariate linear regression to artificial neural network on 14 open access datasets. We found that the metrics provide similar sample size dependence and correlation to other validation parameters. The individual uncertainty originating from the calculation recipes of the metrics is much smaller for both ways than the part caused by the selection of the training set or the training/test split. We concluded that the metrics of the two techniques are interchangeable, but the interpretation of cross‐validation parameters is easier according to their similar range to goodness‐of‐fit and prediction metrics. Furthermore, the variance originating from the random elements of the calculation of cross‐validation metrics is slightly smaller than those of bootstrap ones, if equal calculation load is applied. The two methods provide close to the same information on robustness, but we suggest to use cross‐validation, because: a) Bootstrap values are outliers within the metrics for other validation tasks as goodness‐of‐fit or predictivity. b) The uncertainty of the robustness calculation is smaller for cross‐validation at equal calculation load.</description><subject>ANN</subject><subject>Artificial neural networks</subject><subject>Goodness of fit</subject><subject>MLR</subject><subject>model validation</subject><subject>Parameter uncertainty</subject><subject>PLS</subject><subject>Robustness</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>SVR</subject><subject>XGBOOST</subject><issn>0886-9383</issn><issn>1099-128X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10L1OwzAQB3ALgUQpSDyCJRaWlHMcJ86IqvIhFbF0YECy_HGhqZq42AmoG4_AM_IkpC0r03-4n-5Of0IuGUwYQHpjsZlwweGIjBiUZcJS-XJMRiBlnpRc8lNyFuMKYJjxbEReF0ukrq4qDNhapL6ijXe4psGbPnYtxkh1jEM02Ha0j3X7Rm3wMf58fX_ode10V_uW6tZR430Xu6A3tMFu6V08JyeVXke8-MsxWdzNFtOHZP58_zi9nSc2FRkk2phSCMGdyIrKOtB5pi0zPLdSI0qtNUdpTcEKB6VhFYAxLGOZkDYzqeBjcnVYuwn-vcfYqZXvQztcVBzynEkOvBjU9UHtvw9YqU2oGx22ioHaVaeG6tSuuoEmB_pZr3H7r1PT2dPe_wIVy3JP</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Lasfar, Rita</creator><creator>Tóth, Gergely</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5146-5700</orcidid></search><sort><creationdate>202406</creationdate><title>The difference of model robustness assessment using cross‐validation and bootstrap methods</title><author>Lasfar, Rita ; Tóth, Gergely</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2540-abb95553d547fcd0a64ac1b36c8aee8aaa3e8cb717d09b1f00bb141458c4b253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>ANN</topic><topic>Artificial neural networks</topic><topic>Goodness of fit</topic><topic>MLR</topic><topic>model validation</topic><topic>Parameter uncertainty</topic><topic>PLS</topic><topic>Robustness</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>SVR</topic><topic>XGBOOST</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lasfar, Rita</creatorcontrib><creatorcontrib>Tóth, Gergely</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of chemometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lasfar, Rita</au><au>Tóth, Gergely</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The difference of model robustness assessment using cross‐validation and bootstrap methods</atitle><jtitle>Journal of chemometrics</jtitle><date>2024-06</date><risdate>2024</risdate><volume>38</volume><issue>6</issue><epage>n/a</epage><issn>0886-9383</issn><eissn>1099-128X</eissn><abstract>The validation principles on Quantitative Structure Activity Relationship issued by Organization for Economic and Co‐operation and Development describe three criteria of model assessment: goodness of fit, robustness and prediction. In the case of robustness, two ways are possible as internal validation: bootstrap and cross‐validation. We compared these validation metrics by checking their sample size dependence, rank correlations to other metrics and uncertainty. We used modeling methods from multivariate linear regression to artificial neural network on 14 open access datasets. We found that the metrics provide similar sample size dependence and correlation to other validation parameters. The individual uncertainty originating from the calculation recipes of the metrics is much smaller for both ways than the part caused by the selection of the training set or the training/test split. We concluded that the metrics of the two techniques are interchangeable, but the interpretation of cross‐validation parameters is easier according to their similar range to goodness‐of‐fit and prediction metrics. Furthermore, the variance originating from the random elements of the calculation of cross‐validation metrics is slightly smaller than those of bootstrap ones, if equal calculation load is applied. The two methods provide close to the same information on robustness, but we suggest to use cross‐validation, because: a) Bootstrap values are outliers within the metrics for other validation tasks as goodness‐of‐fit or predictivity. b) The uncertainty of the robustness calculation is smaller for cross‐validation at equal calculation load.</abstract><cop>Chichester</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cem.3530</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5146-5700</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0886-9383
ispartof Journal of chemometrics, 2024-06, Vol.38 (6), p.n/a
issn 0886-9383
1099-128X
language eng
recordid cdi_proquest_journals_3066183037
source Wiley Online Library - AutoHoldings Journals
subjects ANN
Artificial neural networks
Goodness of fit
MLR
model validation
Parameter uncertainty
PLS
Robustness
Statistical analysis
Statistical methods
SVR
XGBOOST
title The difference of model robustness assessment using cross‐validation and bootstrap methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A22%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20difference%20of%20model%20robustness%20assessment%20using%20cross%E2%80%90validation%20and%20bootstrap%20methods&rft.jtitle=Journal%20of%20chemometrics&rft.au=Lasfar,%20Rita&rft.date=2024-06&rft.volume=38&rft.issue=6&rft.epage=n/a&rft.issn=0886-9383&rft.eissn=1099-128X&rft_id=info:doi/10.1002/cem.3530&rft_dat=%3Cproquest_cross%3E3066183037%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066183037&rft_id=info:pmid/&rfr_iscdi=true