Identification of moment equations via data-driven approaches in nonlinear schrodinger models

The moment quantities associated with the nonlinear Schrodinger equation offer important insights towards the evolution dynamics of such dispersive wave partial differential equation (PDE) models. The effective dynamics of the moment quantities is amenable to both analytical and numerical treatments...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-06
Hauptverfasser: Yang, Su, Chen, Shaoxuan, Zhu, Wei, Kevrekidis, P G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Yang, Su
Chen, Shaoxuan
Zhu, Wei
Kevrekidis, P G
description The moment quantities associated with the nonlinear Schrodinger equation offer important insights towards the evolution dynamics of such dispersive wave partial differential equation (PDE) models. The effective dynamics of the moment quantities is amenable to both analytical and numerical treatments. In this paper we present a data-driven approach associated with the Sparse Identification of Nonlinear Dynamics (SINDy) to numerically capture the evolution behaviors of such moment quantities. Our method is applied first to some well-known closed systems of ordinary differential equations (ODEs) which describe the evolution dynamics of relevant moment quantities. Our examples are, progressively, of increasing complexity and our findings explore different choices within the SINDy library. We also consider the potential discovery of coordinate transformations that lead to moment system closure. Finally, we extend considerations to settings where a closed analytical form of the moment dynamics is not available.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3066127267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3066127267</sourcerecordid><originalsourceid>FETCH-proquest_journals_30661272673</originalsourceid><addsrcrecordid>eNqNjtEKgjAYhUcQJOU7_NC1MLfU7qOo-25DhvvNif7Tbfr8jegBujrwncPH2bBESJln55MQO5Z633PORVmJopAJez00UjCtaVQwlsC2MNoxIsB5-SIPq1GgVVCZdmZFAjVNzqqmQw-GgCwNhlA58E3nrDb0RhclGgd_YNtWDR7TX-7Z8XZ9Xu5ZFMwL-lD3dnEUq1ryssxFFY_J_1YflBhEyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066127267</pqid></control><display><type>article</type><title>Identification of moment equations via data-driven approaches in nonlinear schrodinger models</title><source>Free E- Journals</source><creator>Yang, Su ; Chen, Shaoxuan ; Zhu, Wei ; Kevrekidis, P G</creator><creatorcontrib>Yang, Su ; Chen, Shaoxuan ; Zhu, Wei ; Kevrekidis, P G</creatorcontrib><description>The moment quantities associated with the nonlinear Schrodinger equation offer important insights towards the evolution dynamics of such dispersive wave partial differential equation (PDE) models. The effective dynamics of the moment quantities is amenable to both analytical and numerical treatments. In this paper we present a data-driven approach associated with the Sparse Identification of Nonlinear Dynamics (SINDy) to numerically capture the evolution behaviors of such moment quantities. Our method is applied first to some well-known closed systems of ordinary differential equations (ODEs) which describe the evolution dynamics of relevant moment quantities. Our examples are, progressively, of increasing complexity and our findings explore different choices within the SINDy library. We also consider the potential discovery of coordinate transformations that lead to moment system closure. Finally, we extend considerations to settings where a closed analytical form of the moment dynamics is not available.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Coordinate transformations ; Dynamical systems ; Evolution ; Nonlinear dynamics ; Partial differential equations ; Schrodinger equation ; Wave dispersion</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Yang, Su</creatorcontrib><creatorcontrib>Chen, Shaoxuan</creatorcontrib><creatorcontrib>Zhu, Wei</creatorcontrib><creatorcontrib>Kevrekidis, P G</creatorcontrib><title>Identification of moment equations via data-driven approaches in nonlinear schrodinger models</title><title>arXiv.org</title><description>The moment quantities associated with the nonlinear Schrodinger equation offer important insights towards the evolution dynamics of such dispersive wave partial differential equation (PDE) models. The effective dynamics of the moment quantities is amenable to both analytical and numerical treatments. In this paper we present a data-driven approach associated with the Sparse Identification of Nonlinear Dynamics (SINDy) to numerically capture the evolution behaviors of such moment quantities. Our method is applied first to some well-known closed systems of ordinary differential equations (ODEs) which describe the evolution dynamics of relevant moment quantities. Our examples are, progressively, of increasing complexity and our findings explore different choices within the SINDy library. We also consider the potential discovery of coordinate transformations that lead to moment system closure. Finally, we extend considerations to settings where a closed analytical form of the moment dynamics is not available.</description><subject>Coordinate transformations</subject><subject>Dynamical systems</subject><subject>Evolution</subject><subject>Nonlinear dynamics</subject><subject>Partial differential equations</subject><subject>Schrodinger equation</subject><subject>Wave dispersion</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjtEKgjAYhUcQJOU7_NC1MLfU7qOo-25DhvvNif7Tbfr8jegBujrwncPH2bBESJln55MQO5Z633PORVmJopAJez00UjCtaVQwlsC2MNoxIsB5-SIPq1GgVVCZdmZFAjVNzqqmQw-GgCwNhlA58E3nrDb0RhclGgd_YNtWDR7TX-7Z8XZ9Xu5ZFMwL-lD3dnEUq1ryssxFFY_J_1YflBhEyA</recordid><startdate>20240606</startdate><enddate>20240606</enddate><creator>Yang, Su</creator><creator>Chen, Shaoxuan</creator><creator>Zhu, Wei</creator><creator>Kevrekidis, P G</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240606</creationdate><title>Identification of moment equations via data-driven approaches in nonlinear schrodinger models</title><author>Yang, Su ; Chen, Shaoxuan ; Zhu, Wei ; Kevrekidis, P G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30661272673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coordinate transformations</topic><topic>Dynamical systems</topic><topic>Evolution</topic><topic>Nonlinear dynamics</topic><topic>Partial differential equations</topic><topic>Schrodinger equation</topic><topic>Wave dispersion</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang, Su</creatorcontrib><creatorcontrib>Chen, Shaoxuan</creatorcontrib><creatorcontrib>Zhu, Wei</creatorcontrib><creatorcontrib>Kevrekidis, P G</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Su</au><au>Chen, Shaoxuan</au><au>Zhu, Wei</au><au>Kevrekidis, P G</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Identification of moment equations via data-driven approaches in nonlinear schrodinger models</atitle><jtitle>arXiv.org</jtitle><date>2024-06-06</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The moment quantities associated with the nonlinear Schrodinger equation offer important insights towards the evolution dynamics of such dispersive wave partial differential equation (PDE) models. The effective dynamics of the moment quantities is amenable to both analytical and numerical treatments. In this paper we present a data-driven approach associated with the Sparse Identification of Nonlinear Dynamics (SINDy) to numerically capture the evolution behaviors of such moment quantities. Our method is applied first to some well-known closed systems of ordinary differential equations (ODEs) which describe the evolution dynamics of relevant moment quantities. Our examples are, progressively, of increasing complexity and our findings explore different choices within the SINDy library. We also consider the potential discovery of coordinate transformations that lead to moment system closure. Finally, we extend considerations to settings where a closed analytical form of the moment dynamics is not available.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_3066127267
source Free E- Journals
subjects Coordinate transformations
Dynamical systems
Evolution
Nonlinear dynamics
Partial differential equations
Schrodinger equation
Wave dispersion
title Identification of moment equations via data-driven approaches in nonlinear schrodinger models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A58%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Identification%20of%20moment%20equations%20via%20data-driven%20approaches%20in%20nonlinear%20schrodinger%20models&rft.jtitle=arXiv.org&rft.au=Yang,%20Su&rft.date=2024-06-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3066127267%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066127267&rft_id=info:pmid/&rfr_iscdi=true