Site‐Selective Radical Aromatic C−H Functionalization of Alloxazine and Flavin through Ground‐State Single Electron Transfer

Flavins and their alloxazine isomers are key chemical scaffolds for bioinspired electron transfer strategies. Their properties can be fine‐tuned by functional groups, which must be introduced at an early stage of the synthesis as their aromatic ring is inert towards post‐functionalization. We show t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2024-06, Vol.136 (25), p.n/a
Hauptverfasser: Das, Agnideep, Charpentier, Oscar, Hessin, Cheriehan, Schleinitz, Jules, Pianca, David, Le Breton, Nolwenn, Choua, Sylvie, Grimaud, Laurence, Gourlaouen, Christophe, Desage‐El Murr, Marine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 25
container_start_page
container_title Angewandte Chemie
container_volume 136
creator Das, Agnideep
Charpentier, Oscar
Hessin, Cheriehan
Schleinitz, Jules
Pianca, David
Le Breton, Nolwenn
Choua, Sylvie
Grimaud, Laurence
Gourlaouen, Christophe
Desage‐El Murr, Marine
description Flavins and their alloxazine isomers are key chemical scaffolds for bioinspired electron transfer strategies. Their properties can be fine‐tuned by functional groups, which must be introduced at an early stage of the synthesis as their aromatic ring is inert towards post‐functionalization. We show that the introduction of a remote metal‐binding redox site on alloxazine and flavin activates their aromatic ring towards direct C−H functionalization. Mechanistic studies are consistent with a synthetic sequence involving ground‐state single electron transfer (SET) with an electrophilic source followed by radical‐radical coupling. This unprecedented reactivity opens new opportunities in molecular editing of flavins by direct aromatic post‐functionalization and the utility of the method is demonstrated with the site‐selective C6 functionalization of alloxazine and flavin with a CF3 group, Br or Cl, that can be further elaborated into OH and aryl for chemical diversification. Selective functionalization of flavin analogues is desirable for property tuning but requires de novo synthesis. A synthetic strategy involving the introduction of a remote redox site followed by copper complexation turns an alloxazine and a flavin into redox‐active structures and activates their aromatic ring for site‐selective aromatic C−H functionalization. This unprecedented mechanism opens new vistas in the chemistry of flavins and analogues.
doi_str_mv 10.1002/ange.202403417
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3065803790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3065803790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1577-b797e76d3458269a8a2d68511c816f308a172468da4f8f9b94c75534ab1cab83</originalsourceid><addsrcrecordid>eNqFkD9PwzAQxS0EEqWwMltiTrEdJ3bGqOofpAok2j26JE7rynWKkwDthJgYER-xn4RERTAyvZPu_d7pHkLXlAwoIewW7FINGGGc-JyKE9SjAaOeLwJxinqEcO5JxqNzdFFVa0JIyETUQ-9zXavD2-dcGZXV-lnhR8h1BgbHrtxArTM8PHx8TfG4se2-tGD0HroBlwWOjSlfYa-twmBzPDbwrC2uV65slis8acXmXXgNtcJzbZdG4VF3yLX8woGtCuUu0VkBplJXP9pHi_FoMZx6s4fJ3TCeeRkNhPBSEQklwtzngWRhBBJYHsqA0kzSsPCJBCoYD2UOvJBFlEY8E0Hgc0hpBqn0--jmGLt15VOjqjpZl41r_6kSn4SBJL6ISOsaHF2ZK6vKqSLZOr0Bt0soSbqak67m5LfmFoiOwIs2avePO4nvJ6M_9hsvG4Ur</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3065803790</pqid></control><display><type>article</type><title>Site‐Selective Radical Aromatic C−H Functionalization of Alloxazine and Flavin through Ground‐State Single Electron Transfer</title><source>Access via Wiley Online Library</source><creator>Das, Agnideep ; Charpentier, Oscar ; Hessin, Cheriehan ; Schleinitz, Jules ; Pianca, David ; Le Breton, Nolwenn ; Choua, Sylvie ; Grimaud, Laurence ; Gourlaouen, Christophe ; Desage‐El Murr, Marine</creator><creatorcontrib>Das, Agnideep ; Charpentier, Oscar ; Hessin, Cheriehan ; Schleinitz, Jules ; Pianca, David ; Le Breton, Nolwenn ; Choua, Sylvie ; Grimaud, Laurence ; Gourlaouen, Christophe ; Desage‐El Murr, Marine</creatorcontrib><description>Flavins and their alloxazine isomers are key chemical scaffolds for bioinspired electron transfer strategies. Their properties can be fine‐tuned by functional groups, which must be introduced at an early stage of the synthesis as their aromatic ring is inert towards post‐functionalization. We show that the introduction of a remote metal‐binding redox site on alloxazine and flavin activates their aromatic ring towards direct C−H functionalization. Mechanistic studies are consistent with a synthetic sequence involving ground‐state single electron transfer (SET) with an electrophilic source followed by radical‐radical coupling. This unprecedented reactivity opens new opportunities in molecular editing of flavins by direct aromatic post‐functionalization and the utility of the method is demonstrated with the site‐selective C6 functionalization of alloxazine and flavin with a CF3 group, Br or Cl, that can be further elaborated into OH and aryl for chemical diversification. Selective functionalization of flavin analogues is desirable for property tuning but requires de novo synthesis. A synthetic strategy involving the introduction of a remote redox site followed by copper complexation turns an alloxazine and a flavin into redox‐active structures and activates their aromatic ring for site‐selective aromatic C−H functionalization. This unprecedented mechanism opens new vistas in the chemistry of flavins and analogues.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202403417</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>alloxazine ; Aromatic compounds ; copper ; C−H functionalization ; Electron transfer ; Flavin ; Functional groups ; Isomers ; Radicals ; redox-active ligands ; Single electrons</subject><ispartof>Angewandte Chemie, 2024-06, Vol.136 (25), p.n/a</ispartof><rights>2024 The Authors. Angewandte Chemie published by Wiley-VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1577-b797e76d3458269a8a2d68511c816f308a172468da4f8f9b94c75534ab1cab83</cites><orcidid>0000-0002-9223-399X ; 0000-0002-5638-9444 ; 0000-0003-1005-3555 ; 0000-0002-2409-2849 ; 0000-0001-5017-4496 ; 0009-0009-0463-4952 ; 0000-0002-0672-3811 ; 0000-0001-7116-4772 ; 0000-0003-3904-1822</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202403417$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202403417$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Das, Agnideep</creatorcontrib><creatorcontrib>Charpentier, Oscar</creatorcontrib><creatorcontrib>Hessin, Cheriehan</creatorcontrib><creatorcontrib>Schleinitz, Jules</creatorcontrib><creatorcontrib>Pianca, David</creatorcontrib><creatorcontrib>Le Breton, Nolwenn</creatorcontrib><creatorcontrib>Choua, Sylvie</creatorcontrib><creatorcontrib>Grimaud, Laurence</creatorcontrib><creatorcontrib>Gourlaouen, Christophe</creatorcontrib><creatorcontrib>Desage‐El Murr, Marine</creatorcontrib><title>Site‐Selective Radical Aromatic C−H Functionalization of Alloxazine and Flavin through Ground‐State Single Electron Transfer</title><title>Angewandte Chemie</title><description>Flavins and their alloxazine isomers are key chemical scaffolds for bioinspired electron transfer strategies. Their properties can be fine‐tuned by functional groups, which must be introduced at an early stage of the synthesis as their aromatic ring is inert towards post‐functionalization. We show that the introduction of a remote metal‐binding redox site on alloxazine and flavin activates their aromatic ring towards direct C−H functionalization. Mechanistic studies are consistent with a synthetic sequence involving ground‐state single electron transfer (SET) with an electrophilic source followed by radical‐radical coupling. This unprecedented reactivity opens new opportunities in molecular editing of flavins by direct aromatic post‐functionalization and the utility of the method is demonstrated with the site‐selective C6 functionalization of alloxazine and flavin with a CF3 group, Br or Cl, that can be further elaborated into OH and aryl for chemical diversification. Selective functionalization of flavin analogues is desirable for property tuning but requires de novo synthesis. A synthetic strategy involving the introduction of a remote redox site followed by copper complexation turns an alloxazine and a flavin into redox‐active structures and activates their aromatic ring for site‐selective aromatic C−H functionalization. This unprecedented mechanism opens new vistas in the chemistry of flavins and analogues.</description><subject>alloxazine</subject><subject>Aromatic compounds</subject><subject>copper</subject><subject>C−H functionalization</subject><subject>Electron transfer</subject><subject>Flavin</subject><subject>Functional groups</subject><subject>Isomers</subject><subject>Radicals</subject><subject>redox-active ligands</subject><subject>Single electrons</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkD9PwzAQxS0EEqWwMltiTrEdJ3bGqOofpAok2j26JE7rynWKkwDthJgYER-xn4RERTAyvZPu_d7pHkLXlAwoIewW7FINGGGc-JyKE9SjAaOeLwJxinqEcO5JxqNzdFFVa0JIyETUQ-9zXavD2-dcGZXV-lnhR8h1BgbHrtxArTM8PHx8TfG4se2-tGD0HroBlwWOjSlfYa-twmBzPDbwrC2uV65slis8acXmXXgNtcJzbZdG4VF3yLX8woGtCuUu0VkBplJXP9pHi_FoMZx6s4fJ3TCeeRkNhPBSEQklwtzngWRhBBJYHsqA0kzSsPCJBCoYD2UOvJBFlEY8E0Hgc0hpBqn0--jmGLt15VOjqjpZl41r_6kSn4SBJL6ISOsaHF2ZK6vKqSLZOr0Bt0soSbqak67m5LfmFoiOwIs2avePO4nvJ6M_9hsvG4Ur</recordid><startdate>20240617</startdate><enddate>20240617</enddate><creator>Das, Agnideep</creator><creator>Charpentier, Oscar</creator><creator>Hessin, Cheriehan</creator><creator>Schleinitz, Jules</creator><creator>Pianca, David</creator><creator>Le Breton, Nolwenn</creator><creator>Choua, Sylvie</creator><creator>Grimaud, Laurence</creator><creator>Gourlaouen, Christophe</creator><creator>Desage‐El Murr, Marine</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9223-399X</orcidid><orcidid>https://orcid.org/0000-0002-5638-9444</orcidid><orcidid>https://orcid.org/0000-0003-1005-3555</orcidid><orcidid>https://orcid.org/0000-0002-2409-2849</orcidid><orcidid>https://orcid.org/0000-0001-5017-4496</orcidid><orcidid>https://orcid.org/0009-0009-0463-4952</orcidid><orcidid>https://orcid.org/0000-0002-0672-3811</orcidid><orcidid>https://orcid.org/0000-0001-7116-4772</orcidid><orcidid>https://orcid.org/0000-0003-3904-1822</orcidid></search><sort><creationdate>20240617</creationdate><title>Site‐Selective Radical Aromatic C−H Functionalization of Alloxazine and Flavin through Ground‐State Single Electron Transfer</title><author>Das, Agnideep ; Charpentier, Oscar ; Hessin, Cheriehan ; Schleinitz, Jules ; Pianca, David ; Le Breton, Nolwenn ; Choua, Sylvie ; Grimaud, Laurence ; Gourlaouen, Christophe ; Desage‐El Murr, Marine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1577-b797e76d3458269a8a2d68511c816f308a172468da4f8f9b94c75534ab1cab83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>alloxazine</topic><topic>Aromatic compounds</topic><topic>copper</topic><topic>C−H functionalization</topic><topic>Electron transfer</topic><topic>Flavin</topic><topic>Functional groups</topic><topic>Isomers</topic><topic>Radicals</topic><topic>redox-active ligands</topic><topic>Single electrons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Agnideep</creatorcontrib><creatorcontrib>Charpentier, Oscar</creatorcontrib><creatorcontrib>Hessin, Cheriehan</creatorcontrib><creatorcontrib>Schleinitz, Jules</creatorcontrib><creatorcontrib>Pianca, David</creatorcontrib><creatorcontrib>Le Breton, Nolwenn</creatorcontrib><creatorcontrib>Choua, Sylvie</creatorcontrib><creatorcontrib>Grimaud, Laurence</creatorcontrib><creatorcontrib>Gourlaouen, Christophe</creatorcontrib><creatorcontrib>Desage‐El Murr, Marine</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Agnideep</au><au>Charpentier, Oscar</au><au>Hessin, Cheriehan</au><au>Schleinitz, Jules</au><au>Pianca, David</au><au>Le Breton, Nolwenn</au><au>Choua, Sylvie</au><au>Grimaud, Laurence</au><au>Gourlaouen, Christophe</au><au>Desage‐El Murr, Marine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Site‐Selective Radical Aromatic C−H Functionalization of Alloxazine and Flavin through Ground‐State Single Electron Transfer</atitle><jtitle>Angewandte Chemie</jtitle><date>2024-06-17</date><risdate>2024</risdate><volume>136</volume><issue>25</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Flavins and their alloxazine isomers are key chemical scaffolds for bioinspired electron transfer strategies. Their properties can be fine‐tuned by functional groups, which must be introduced at an early stage of the synthesis as their aromatic ring is inert towards post‐functionalization. We show that the introduction of a remote metal‐binding redox site on alloxazine and flavin activates their aromatic ring towards direct C−H functionalization. Mechanistic studies are consistent with a synthetic sequence involving ground‐state single electron transfer (SET) with an electrophilic source followed by radical‐radical coupling. This unprecedented reactivity opens new opportunities in molecular editing of flavins by direct aromatic post‐functionalization and the utility of the method is demonstrated with the site‐selective C6 functionalization of alloxazine and flavin with a CF3 group, Br or Cl, that can be further elaborated into OH and aryl for chemical diversification. Selective functionalization of flavin analogues is desirable for property tuning but requires de novo synthesis. A synthetic strategy involving the introduction of a remote redox site followed by copper complexation turns an alloxazine and a flavin into redox‐active structures and activates their aromatic ring for site‐selective aromatic C−H functionalization. This unprecedented mechanism opens new vistas in the chemistry of flavins and analogues.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202403417</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9223-399X</orcidid><orcidid>https://orcid.org/0000-0002-5638-9444</orcidid><orcidid>https://orcid.org/0000-0003-1005-3555</orcidid><orcidid>https://orcid.org/0000-0002-2409-2849</orcidid><orcidid>https://orcid.org/0000-0001-5017-4496</orcidid><orcidid>https://orcid.org/0009-0009-0463-4952</orcidid><orcidid>https://orcid.org/0000-0002-0672-3811</orcidid><orcidid>https://orcid.org/0000-0001-7116-4772</orcidid><orcidid>https://orcid.org/0000-0003-3904-1822</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2024-06, Vol.136 (25), p.n/a
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_3065803790
source Access via Wiley Online Library
subjects alloxazine
Aromatic compounds
copper
C−H functionalization
Electron transfer
Flavin
Functional groups
Isomers
Radicals
redox-active ligands
Single electrons
title Site‐Selective Radical Aromatic C−H Functionalization of Alloxazine and Flavin through Ground‐State Single Electron Transfer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A11%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Site%E2%80%90Selective%20Radical%20Aromatic%20C%E2%88%92H%20Functionalization%20of%20Alloxazine%20and%20Flavin%20through%20Ground%E2%80%90State%20Single%20Electron%20Transfer&rft.jtitle=Angewandte%20Chemie&rft.au=Das,%20Agnideep&rft.date=2024-06-17&rft.volume=136&rft.issue=25&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202403417&rft_dat=%3Cproquest_cross%3E3065803790%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3065803790&rft_id=info:pmid/&rfr_iscdi=true