Corrigendum to a fractional sideways problem in a one‐dimensional finite‐slab with deterministic and random interior perturbed data
In a lot of engineering applications, one has to recover the temperature of a heat body having a surface that cannot be measured directly. This raises an inverse problem of determining the temperature on the surface of a body using interior measurements, which is called the sideways problem. Many pa...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2024-07, Vol.47 (11), p.8683-8708 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8708 |
---|---|
container_issue | 11 |
container_start_page | 8683 |
container_title | Mathematical methods in the applied sciences |
container_volume | 47 |
creator | Duc Trong, Dang Thi Hong Nhung, Nguyen Dang Minh, Nguyen Nhu Lan, Nguyen |
description | In a lot of engineering applications, one has to recover the temperature of a heat body having a surface that cannot be measured directly. This raises an inverse problem of determining the temperature on the surface of a body using interior measurements, which is called the sideways problem. Many papers investigated the problem (with or without fractional derivatives) by using the Cauchy data
u(x0,t),ux(x0,t)$$ u\left({x}_0,t\right),{u}_x\left({x}_0,t\right) $$ measured at one interior point
x=x0∈(0,L)$$ x={x}_0\in \left(0,L\right) $$ or using an interior data
u(x0,t)$$ u\left({x}_0,t\right) $$ and the assumption
limx→∞u(x,t)=0$$ {\lim}_{x\to \infty }u\left(x,t\right)=0 $$. However, the flux
ux(x0,t)$$ {u}_x\left({x}_0,t\right) $$ is not easy to measure, and the temperature assumption at infinity is inappropriate for a bounded body. Hence, in the present paper, we consider a fractional sideways problem, in which the interior measurements at two interior point, namely,
x=1$$ x=1 $$ and
x=2$$ x=2 $$, are given by continuous data with deterministic noises and by discrete data contaminated with random noises. We show that the problem is severely ill‐posed and further constructs an a posteriori optimal truncation regularization method for the deterministic data, and we also construct a nonparametric regularization for the discrete random data. Numerical examples show that the proposed method works well. |
doi_str_mv | 10.1002/mma.10039 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3065803769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3065803769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2579-9293d95e4b509395e81ea9b2f6a22f0f19197301e9eea0a33d2d032d518da0a3</originalsourceid><addsrcrecordid>eNp1kLtOwzAUhi0EEqUw8AaWmBhCj-2kqceq4ia1YukeOfEJuEriYjuqurGx8ow8CQ5hZTnX7xzp_wm5ZnDHAPisbdVQCHlCJgykTFiaz0_JBFgOScpZek4uvN8BwIIxPiGfK-ucecVO9y0NlipaO1UFYzvVUG80HtTR072zZYMtNV0EbIffH1_atNj5katNZ8Iw9I0q6cGEN6oxoGvj3AdTUdVp6mKww4u4MNbRPbrQuxI11SqoS3JWq8bj1V-eku3D_Xb1lKxfHp9Xy3VS8SyXieRSaJlhWmYgRSwWDJUseT1XnNdQM8lkLoChRFSghNBcg-A6Yws99FNyM76Nit579KHY2d5FDb4QMM8WIPK5jNTtSFXOeu-wLvbOtModCwbFYHMRbS5-bY7sbGQPpsHj_2Cx2SzHix-Pd4LI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3065803769</pqid></control><display><type>article</type><title>Corrigendum to a fractional sideways problem in a one‐dimensional finite‐slab with deterministic and random interior perturbed data</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Duc Trong, Dang ; Thi Hong Nhung, Nguyen ; Dang Minh, Nguyen ; Nhu Lan, Nguyen</creator><creatorcontrib>Duc Trong, Dang ; Thi Hong Nhung, Nguyen ; Dang Minh, Nguyen ; Nhu Lan, Nguyen</creatorcontrib><description>In a lot of engineering applications, one has to recover the temperature of a heat body having a surface that cannot be measured directly. This raises an inverse problem of determining the temperature on the surface of a body using interior measurements, which is called the sideways problem. Many papers investigated the problem (with or without fractional derivatives) by using the Cauchy data
u(x0,t),ux(x0,t)$$ u\left({x}_0,t\right),{u}_x\left({x}_0,t\right) $$ measured at one interior point
x=x0∈(0,L)$$ x&amp;#x0003D;{x}_0\in \left(0,L\right) $$ or using an interior data
u(x0,t)$$ u\left({x}_0,t\right) $$ and the assumption
limx→∞u(x,t)=0$$ {\lim}_{x\to \infty }u\left(x,t\right)&amp;#x0003D;0 $$. However, the flux
ux(x0,t)$$ {u}_x\left({x}_0,t\right) $$ is not easy to measure, and the temperature assumption at infinity is inappropriate for a bounded body. Hence, in the present paper, we consider a fractional sideways problem, in which the interior measurements at two interior point, namely,
x=1$$ x&amp;#x0003D;1 $$ and
x=2$$ x&amp;#x0003D;2 $$, are given by continuous data with deterministic noises and by discrete data contaminated with random noises. We show that the problem is severely ill‐posed and further constructs an a posteriori optimal truncation regularization method for the deterministic data, and we also construct a nonparametric regularization for the discrete random data. Numerical examples show that the proposed method works well.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.10039</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>fractional diffusion equation ; ill‐posed problem ; inverse problem ; Inverse problems ; nonparametric regression ; Regularization ; Regularization methods ; sideways problem</subject><ispartof>Mathematical methods in the applied sciences, 2024-07, Vol.47 (11), p.8683-8708</ispartof><rights>2024 John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2579-9293d95e4b509395e81ea9b2f6a22f0f19197301e9eea0a33d2d032d518da0a3</cites><orcidid>0000-0002-5226-5639</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.10039$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.10039$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Duc Trong, Dang</creatorcontrib><creatorcontrib>Thi Hong Nhung, Nguyen</creatorcontrib><creatorcontrib>Dang Minh, Nguyen</creatorcontrib><creatorcontrib>Nhu Lan, Nguyen</creatorcontrib><title>Corrigendum to a fractional sideways problem in a one‐dimensional finite‐slab with deterministic and random interior perturbed data</title><title>Mathematical methods in the applied sciences</title><description>In a lot of engineering applications, one has to recover the temperature of a heat body having a surface that cannot be measured directly. This raises an inverse problem of determining the temperature on the surface of a body using interior measurements, which is called the sideways problem. Many papers investigated the problem (with or without fractional derivatives) by using the Cauchy data
u(x0,t),ux(x0,t)$$ u\left({x}_0,t\right),{u}_x\left({x}_0,t\right) $$ measured at one interior point
x=x0∈(0,L)$$ x&amp;#x0003D;{x}_0\in \left(0,L\right) $$ or using an interior data
u(x0,t)$$ u\left({x}_0,t\right) $$ and the assumption
limx→∞u(x,t)=0$$ {\lim}_{x\to \infty }u\left(x,t\right)&amp;#x0003D;0 $$. However, the flux
ux(x0,t)$$ {u}_x\left({x}_0,t\right) $$ is not easy to measure, and the temperature assumption at infinity is inappropriate for a bounded body. Hence, in the present paper, we consider a fractional sideways problem, in which the interior measurements at two interior point, namely,
x=1$$ x&amp;#x0003D;1 $$ and
x=2$$ x&amp;#x0003D;2 $$, are given by continuous data with deterministic noises and by discrete data contaminated with random noises. We show that the problem is severely ill‐posed and further constructs an a posteriori optimal truncation regularization method for the deterministic data, and we also construct a nonparametric regularization for the discrete random data. Numerical examples show that the proposed method works well.</description><subject>fractional diffusion equation</subject><subject>ill‐posed problem</subject><subject>inverse problem</subject><subject>Inverse problems</subject><subject>nonparametric regression</subject><subject>Regularization</subject><subject>Regularization methods</subject><subject>sideways problem</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOwzAUhi0EEqUw8AaWmBhCj-2kqceq4ia1YukeOfEJuEriYjuqurGx8ow8CQ5hZTnX7xzp_wm5ZnDHAPisbdVQCHlCJgykTFiaz0_JBFgOScpZek4uvN8BwIIxPiGfK-ucecVO9y0NlipaO1UFYzvVUG80HtTR072zZYMtNV0EbIffH1_atNj5katNZ8Iw9I0q6cGEN6oxoGvj3AdTUdVp6mKww4u4MNbRPbrQuxI11SqoS3JWq8bj1V-eku3D_Xb1lKxfHp9Xy3VS8SyXieRSaJlhWmYgRSwWDJUseT1XnNdQM8lkLoChRFSghNBcg-A6Yws99FNyM76Nit579KHY2d5FDb4QMM8WIPK5jNTtSFXOeu-wLvbOtModCwbFYHMRbS5-bY7sbGQPpsHj_2Cx2SzHix-Pd4LI</recordid><startdate>20240730</startdate><enddate>20240730</enddate><creator>Duc Trong, Dang</creator><creator>Thi Hong Nhung, Nguyen</creator><creator>Dang Minh, Nguyen</creator><creator>Nhu Lan, Nguyen</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-5226-5639</orcidid></search><sort><creationdate>20240730</creationdate><title>Corrigendum to a fractional sideways problem in a one‐dimensional finite‐slab with deterministic and random interior perturbed data</title><author>Duc Trong, Dang ; Thi Hong Nhung, Nguyen ; Dang Minh, Nguyen ; Nhu Lan, Nguyen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2579-9293d95e4b509395e81ea9b2f6a22f0f19197301e9eea0a33d2d032d518da0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>fractional diffusion equation</topic><topic>ill‐posed problem</topic><topic>inverse problem</topic><topic>Inverse problems</topic><topic>nonparametric regression</topic><topic>Regularization</topic><topic>Regularization methods</topic><topic>sideways problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duc Trong, Dang</creatorcontrib><creatorcontrib>Thi Hong Nhung, Nguyen</creatorcontrib><creatorcontrib>Dang Minh, Nguyen</creatorcontrib><creatorcontrib>Nhu Lan, Nguyen</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duc Trong, Dang</au><au>Thi Hong Nhung, Nguyen</au><au>Dang Minh, Nguyen</au><au>Nhu Lan, Nguyen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Corrigendum to a fractional sideways problem in a one‐dimensional finite‐slab with deterministic and random interior perturbed data</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2024-07-30</date><risdate>2024</risdate><volume>47</volume><issue>11</issue><spage>8683</spage><epage>8708</epage><pages>8683-8708</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In a lot of engineering applications, one has to recover the temperature of a heat body having a surface that cannot be measured directly. This raises an inverse problem of determining the temperature on the surface of a body using interior measurements, which is called the sideways problem. Many papers investigated the problem (with or without fractional derivatives) by using the Cauchy data
u(x0,t),ux(x0,t)$$ u\left({x}_0,t\right),{u}_x\left({x}_0,t\right) $$ measured at one interior point
x=x0∈(0,L)$$ x&amp;#x0003D;{x}_0\in \left(0,L\right) $$ or using an interior data
u(x0,t)$$ u\left({x}_0,t\right) $$ and the assumption
limx→∞u(x,t)=0$$ {\lim}_{x\to \infty }u\left(x,t\right)&amp;#x0003D;0 $$. However, the flux
ux(x0,t)$$ {u}_x\left({x}_0,t\right) $$ is not easy to measure, and the temperature assumption at infinity is inappropriate for a bounded body. Hence, in the present paper, we consider a fractional sideways problem, in which the interior measurements at two interior point, namely,
x=1$$ x&amp;#x0003D;1 $$ and
x=2$$ x&amp;#x0003D;2 $$, are given by continuous data with deterministic noises and by discrete data contaminated with random noises. We show that the problem is severely ill‐posed and further constructs an a posteriori optimal truncation regularization method for the deterministic data, and we also construct a nonparametric regularization for the discrete random data. Numerical examples show that the proposed method works well.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.10039</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-5226-5639</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2024-07, Vol.47 (11), p.8683-8708 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_3065803769 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | fractional diffusion equation ill‐posed problem inverse problem Inverse problems nonparametric regression Regularization Regularization methods sideways problem |
title | Corrigendum to a fractional sideways problem in a one‐dimensional finite‐slab with deterministic and random interior perturbed data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A11%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Corrigendum%20to%20a%20fractional%20sideways%20problem%20in%20a%20one%E2%80%90dimensional%20finite%E2%80%90slab%20with%20deterministic%20and%20random%20interior%20perturbed%20data&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Duc%20Trong,%20Dang&rft.date=2024-07-30&rft.volume=47&rft.issue=11&rft.spage=8683&rft.epage=8708&rft.pages=8683-8708&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.10039&rft_dat=%3Cproquest_cross%3E3065803769%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3065803769&rft_id=info:pmid/&rfr_iscdi=true |