Invariant analysis, approximate solutions, and conservation laws for the time fractional higher order Boussinesq–Burgers system
In this paper, we employ the time fractional higher order nonlinear Boussinesq–Burgers system to investigate shallow water waves based on the Riemann–Liouville and Caputo fractional partial derivatives. The Lie algebra of infinitesimal generators associated with the symmetry groups that leave the st...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2024-07, Vol.47 (11), p.9137-9156 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9156 |
---|---|
container_issue | 11 |
container_start_page | 9137 |
container_title | Mathematical methods in the applied sciences |
container_volume | 47 |
creator | Rahioui, Mohamed El Kinani, El Hassan Ouhadan, Abdelaziz |
description | In this paper, we employ the time fractional higher order nonlinear Boussinesq–Burgers system to investigate shallow water waves based on the Riemann–Liouville and Caputo fractional partial derivatives. The Lie algebra of infinitesimal generators associated with the symmetry groups that leave the studied system invariant is systematically constructed, and the similarity reductions are established. Furthermore, conserved quantities of the system under consideration are formulated. Next, the power series solution, including the convergence analysis, is obtained. Based on the fractional Sumudu–Adomian decomposition method, some approximate solutions are derived. Finally, in order to show the efficiency of the considered methods, the effect of the fractional order, as well as the dynamical behavior of solutions, numerical validation and graphical representations are designed. |
doi_str_mv | 10.1002/mma.10063 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3065803734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3065803734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1873-4bb6cb651db847bdc689351c19f45d00f5b97569ac1e88f0bd5eec3066458bee3</originalsourceid><addsrcrecordid>eNp1kM1OwzAMxyMEEmNw4A0icUKiLFnTtD1uEx-TNnGBc5Wm7papH1vcbvQGz8Ab8iSkjCsX2_r7Z8v-E3LN2T1nbDwqS9UX0j8hA87i2OMilKdkwHjIPDHm4pxcIG4YYxHn4wH5nFd7ZY2qGqoqVXRo8I6q7dbW76ZUDVCsi7YxddXLVUa1q8DuVS_RQh2Q5rWlzRpoY0qguVW6b6mCrs1qDZbWNnNxWreIpgLcfX98TVu7AosUO2ygvCRnuSoQrv7ykLw9PrzOnr3Fy9N8Nll4mkeh74k0lTqVAc_SSIRppmUU-wHXPM5FkDGWB2kcBjJWmkMU5SzNAgDtMylFEKUA_pDcHPe633YtYJNs6ta6SzFxVBAxP_SFo26PlLY1ooU82VpnhO0SzpLe4cQ5nPw67NjRkT2YArr_wWS5nBwnfgBL3YEF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3065803734</pqid></control><display><type>article</type><title>Invariant analysis, approximate solutions, and conservation laws for the time fractional higher order Boussinesq–Burgers system</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Rahioui, Mohamed ; El Kinani, El Hassan ; Ouhadan, Abdelaziz</creator><creatorcontrib>Rahioui, Mohamed ; El Kinani, El Hassan ; Ouhadan, Abdelaziz</creatorcontrib><description>In this paper, we employ the time fractional higher order nonlinear Boussinesq–Burgers system to investigate shallow water waves based on the Riemann–Liouville and Caputo fractional partial derivatives. The Lie algebra of infinitesimal generators associated with the symmetry groups that leave the studied system invariant is systematically constructed, and the similarity reductions are established. Furthermore, conserved quantities of the system under consideration are formulated. Next, the power series solution, including the convergence analysis, is obtained. Based on the fractional Sumudu–Adomian decomposition method, some approximate solutions are derived. Finally, in order to show the efficiency of the considered methods, the effect of the fractional order, as well as the dynamical behavior of solutions, numerical validation and graphical representations are designed.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.10063</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>approximate solutions ; Boussinesq equations ; Conservation laws ; fractional conservation laws ; Graphical representations ; Invariants ; Lie group analysis ; Lie groups ; Power series ; Shallow water ; time fractional higher order nonlinear B‐B system ; Water waves</subject><ispartof>Mathematical methods in the applied sciences, 2024-07, Vol.47 (11), p.9137-9156</ispartof><rights>2024 John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1873-4bb6cb651db847bdc689351c19f45d00f5b97569ac1e88f0bd5eec3066458bee3</cites><orcidid>0000-0002-0619-0867 ; 0000-0002-3968-8143</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.10063$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.10063$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Rahioui, Mohamed</creatorcontrib><creatorcontrib>El Kinani, El Hassan</creatorcontrib><creatorcontrib>Ouhadan, Abdelaziz</creatorcontrib><title>Invariant analysis, approximate solutions, and conservation laws for the time fractional higher order Boussinesq–Burgers system</title><title>Mathematical methods in the applied sciences</title><description>In this paper, we employ the time fractional higher order nonlinear Boussinesq–Burgers system to investigate shallow water waves based on the Riemann–Liouville and Caputo fractional partial derivatives. The Lie algebra of infinitesimal generators associated with the symmetry groups that leave the studied system invariant is systematically constructed, and the similarity reductions are established. Furthermore, conserved quantities of the system under consideration are formulated. Next, the power series solution, including the convergence analysis, is obtained. Based on the fractional Sumudu–Adomian decomposition method, some approximate solutions are derived. Finally, in order to show the efficiency of the considered methods, the effect of the fractional order, as well as the dynamical behavior of solutions, numerical validation and graphical representations are designed.</description><subject>approximate solutions</subject><subject>Boussinesq equations</subject><subject>Conservation laws</subject><subject>fractional conservation laws</subject><subject>Graphical representations</subject><subject>Invariants</subject><subject>Lie group analysis</subject><subject>Lie groups</subject><subject>Power series</subject><subject>Shallow water</subject><subject>time fractional higher order nonlinear B‐B system</subject><subject>Water waves</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAMxyMEEmNw4A0icUKiLFnTtD1uEx-TNnGBc5Wm7papH1vcbvQGz8Ab8iSkjCsX2_r7Z8v-E3LN2T1nbDwqS9UX0j8hA87i2OMilKdkwHjIPDHm4pxcIG4YYxHn4wH5nFd7ZY2qGqoqVXRo8I6q7dbW76ZUDVCsi7YxddXLVUa1q8DuVS_RQh2Q5rWlzRpoY0qguVW6b6mCrs1qDZbWNnNxWreIpgLcfX98TVu7AosUO2ygvCRnuSoQrv7ykLw9PrzOnr3Fy9N8Nll4mkeh74k0lTqVAc_SSIRppmUU-wHXPM5FkDGWB2kcBjJWmkMU5SzNAgDtMylFEKUA_pDcHPe633YtYJNs6ta6SzFxVBAxP_SFo26PlLY1ooU82VpnhO0SzpLe4cQ5nPw67NjRkT2YArr_wWS5nBwnfgBL3YEF</recordid><startdate>20240730</startdate><enddate>20240730</enddate><creator>Rahioui, Mohamed</creator><creator>El Kinani, El Hassan</creator><creator>Ouhadan, Abdelaziz</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-0619-0867</orcidid><orcidid>https://orcid.org/0000-0002-3968-8143</orcidid></search><sort><creationdate>20240730</creationdate><title>Invariant analysis, approximate solutions, and conservation laws for the time fractional higher order Boussinesq–Burgers system</title><author>Rahioui, Mohamed ; El Kinani, El Hassan ; Ouhadan, Abdelaziz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1873-4bb6cb651db847bdc689351c19f45d00f5b97569ac1e88f0bd5eec3066458bee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>approximate solutions</topic><topic>Boussinesq equations</topic><topic>Conservation laws</topic><topic>fractional conservation laws</topic><topic>Graphical representations</topic><topic>Invariants</topic><topic>Lie group analysis</topic><topic>Lie groups</topic><topic>Power series</topic><topic>Shallow water</topic><topic>time fractional higher order nonlinear B‐B system</topic><topic>Water waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahioui, Mohamed</creatorcontrib><creatorcontrib>El Kinani, El Hassan</creatorcontrib><creatorcontrib>Ouhadan, Abdelaziz</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahioui, Mohamed</au><au>El Kinani, El Hassan</au><au>Ouhadan, Abdelaziz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Invariant analysis, approximate solutions, and conservation laws for the time fractional higher order Boussinesq–Burgers system</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2024-07-30</date><risdate>2024</risdate><volume>47</volume><issue>11</issue><spage>9137</spage><epage>9156</epage><pages>9137-9156</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In this paper, we employ the time fractional higher order nonlinear Boussinesq–Burgers system to investigate shallow water waves based on the Riemann–Liouville and Caputo fractional partial derivatives. The Lie algebra of infinitesimal generators associated with the symmetry groups that leave the studied system invariant is systematically constructed, and the similarity reductions are established. Furthermore, conserved quantities of the system under consideration are formulated. Next, the power series solution, including the convergence analysis, is obtained. Based on the fractional Sumudu–Adomian decomposition method, some approximate solutions are derived. Finally, in order to show the efficiency of the considered methods, the effect of the fractional order, as well as the dynamical behavior of solutions, numerical validation and graphical representations are designed.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.10063</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-0619-0867</orcidid><orcidid>https://orcid.org/0000-0002-3968-8143</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2024-07, Vol.47 (11), p.9137-9156 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_3065803734 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | approximate solutions Boussinesq equations Conservation laws fractional conservation laws Graphical representations Invariants Lie group analysis Lie groups Power series Shallow water time fractional higher order nonlinear B‐B system Water waves |
title | Invariant analysis, approximate solutions, and conservation laws for the time fractional higher order Boussinesq–Burgers system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A55%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Invariant%20analysis,%20approximate%20solutions,%20and%20conservation%20laws%20for%20the%20time%20fractional%20higher%20order%20Boussinesq%E2%80%93Burgers%20system&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Rahioui,%20Mohamed&rft.date=2024-07-30&rft.volume=47&rft.issue=11&rft.spage=9137&rft.epage=9156&rft.pages=9137-9156&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.10063&rft_dat=%3Cproquest_cross%3E3065803734%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3065803734&rft_id=info:pmid/&rfr_iscdi=true |