Invariant analysis, approximate solutions, and conservation laws for the time fractional higher order Boussinesq–Burgers system

In this paper, we employ the time fractional higher order nonlinear Boussinesq–Burgers system to investigate shallow water waves based on the Riemann–Liouville and Caputo fractional partial derivatives. The Lie algebra of infinitesimal generators associated with the symmetry groups that leave the st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2024-07, Vol.47 (11), p.9137-9156
Hauptverfasser: Rahioui, Mohamed, El Kinani, El Hassan, Ouhadan, Abdelaziz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9156
container_issue 11
container_start_page 9137
container_title Mathematical methods in the applied sciences
container_volume 47
creator Rahioui, Mohamed
El Kinani, El Hassan
Ouhadan, Abdelaziz
description In this paper, we employ the time fractional higher order nonlinear Boussinesq–Burgers system to investigate shallow water waves based on the Riemann–Liouville and Caputo fractional partial derivatives. The Lie algebra of infinitesimal generators associated with the symmetry groups that leave the studied system invariant is systematically constructed, and the similarity reductions are established. Furthermore, conserved quantities of the system under consideration are formulated. Next, the power series solution, including the convergence analysis, is obtained. Based on the fractional Sumudu–Adomian decomposition method, some approximate solutions are derived. Finally, in order to show the efficiency of the considered methods, the effect of the fractional order, as well as the dynamical behavior of solutions, numerical validation and graphical representations are designed.
doi_str_mv 10.1002/mma.10063
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3065803734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3065803734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1873-4bb6cb651db847bdc689351c19f45d00f5b97569ac1e88f0bd5eec3066458bee3</originalsourceid><addsrcrecordid>eNp1kM1OwzAMxyMEEmNw4A0icUKiLFnTtD1uEx-TNnGBc5Wm7papH1vcbvQGz8Ab8iSkjCsX2_r7Z8v-E3LN2T1nbDwqS9UX0j8hA87i2OMilKdkwHjIPDHm4pxcIG4YYxHn4wH5nFd7ZY2qGqoqVXRo8I6q7dbW76ZUDVCsi7YxddXLVUa1q8DuVS_RQh2Q5rWlzRpoY0qguVW6b6mCrs1qDZbWNnNxWreIpgLcfX98TVu7AosUO2ygvCRnuSoQrv7ykLw9PrzOnr3Fy9N8Nll4mkeh74k0lTqVAc_SSIRppmUU-wHXPM5FkDGWB2kcBjJWmkMU5SzNAgDtMylFEKUA_pDcHPe633YtYJNs6ta6SzFxVBAxP_SFo26PlLY1ooU82VpnhO0SzpLe4cQ5nPw67NjRkT2YArr_wWS5nBwnfgBL3YEF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3065803734</pqid></control><display><type>article</type><title>Invariant analysis, approximate solutions, and conservation laws for the time fractional higher order Boussinesq–Burgers system</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Rahioui, Mohamed ; El Kinani, El Hassan ; Ouhadan, Abdelaziz</creator><creatorcontrib>Rahioui, Mohamed ; El Kinani, El Hassan ; Ouhadan, Abdelaziz</creatorcontrib><description>In this paper, we employ the time fractional higher order nonlinear Boussinesq–Burgers system to investigate shallow water waves based on the Riemann–Liouville and Caputo fractional partial derivatives. The Lie algebra of infinitesimal generators associated with the symmetry groups that leave the studied system invariant is systematically constructed, and the similarity reductions are established. Furthermore, conserved quantities of the system under consideration are formulated. Next, the power series solution, including the convergence analysis, is obtained. Based on the fractional Sumudu–Adomian decomposition method, some approximate solutions are derived. Finally, in order to show the efficiency of the considered methods, the effect of the fractional order, as well as the dynamical behavior of solutions, numerical validation and graphical representations are designed.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.10063</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>approximate solutions ; Boussinesq equations ; Conservation laws ; fractional conservation laws ; Graphical representations ; Invariants ; Lie group analysis ; Lie groups ; Power series ; Shallow water ; time fractional higher order nonlinear B‐B system ; Water waves</subject><ispartof>Mathematical methods in the applied sciences, 2024-07, Vol.47 (11), p.9137-9156</ispartof><rights>2024 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1873-4bb6cb651db847bdc689351c19f45d00f5b97569ac1e88f0bd5eec3066458bee3</cites><orcidid>0000-0002-0619-0867 ; 0000-0002-3968-8143</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.10063$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.10063$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Rahioui, Mohamed</creatorcontrib><creatorcontrib>El Kinani, El Hassan</creatorcontrib><creatorcontrib>Ouhadan, Abdelaziz</creatorcontrib><title>Invariant analysis, approximate solutions, and conservation laws for the time fractional higher order Boussinesq–Burgers system</title><title>Mathematical methods in the applied sciences</title><description>In this paper, we employ the time fractional higher order nonlinear Boussinesq–Burgers system to investigate shallow water waves based on the Riemann–Liouville and Caputo fractional partial derivatives. The Lie algebra of infinitesimal generators associated with the symmetry groups that leave the studied system invariant is systematically constructed, and the similarity reductions are established. Furthermore, conserved quantities of the system under consideration are formulated. Next, the power series solution, including the convergence analysis, is obtained. Based on the fractional Sumudu–Adomian decomposition method, some approximate solutions are derived. Finally, in order to show the efficiency of the considered methods, the effect of the fractional order, as well as the dynamical behavior of solutions, numerical validation and graphical representations are designed.</description><subject>approximate solutions</subject><subject>Boussinesq equations</subject><subject>Conservation laws</subject><subject>fractional conservation laws</subject><subject>Graphical representations</subject><subject>Invariants</subject><subject>Lie group analysis</subject><subject>Lie groups</subject><subject>Power series</subject><subject>Shallow water</subject><subject>time fractional higher order nonlinear B‐B system</subject><subject>Water waves</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAMxyMEEmNw4A0icUKiLFnTtD1uEx-TNnGBc5Wm7papH1vcbvQGz8Ab8iSkjCsX2_r7Z8v-E3LN2T1nbDwqS9UX0j8hA87i2OMilKdkwHjIPDHm4pxcIG4YYxHn4wH5nFd7ZY2qGqoqVXRo8I6q7dbW76ZUDVCsi7YxddXLVUa1q8DuVS_RQh2Q5rWlzRpoY0qguVW6b6mCrs1qDZbWNnNxWreIpgLcfX98TVu7AosUO2ygvCRnuSoQrv7ykLw9PrzOnr3Fy9N8Nll4mkeh74k0lTqVAc_SSIRppmUU-wHXPM5FkDGWB2kcBjJWmkMU5SzNAgDtMylFEKUA_pDcHPe633YtYJNs6ta6SzFxVBAxP_SFo26PlLY1ooU82VpnhO0SzpLe4cQ5nPw67NjRkT2YArr_wWS5nBwnfgBL3YEF</recordid><startdate>20240730</startdate><enddate>20240730</enddate><creator>Rahioui, Mohamed</creator><creator>El Kinani, El Hassan</creator><creator>Ouhadan, Abdelaziz</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-0619-0867</orcidid><orcidid>https://orcid.org/0000-0002-3968-8143</orcidid></search><sort><creationdate>20240730</creationdate><title>Invariant analysis, approximate solutions, and conservation laws for the time fractional higher order Boussinesq–Burgers system</title><author>Rahioui, Mohamed ; El Kinani, El Hassan ; Ouhadan, Abdelaziz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1873-4bb6cb651db847bdc689351c19f45d00f5b97569ac1e88f0bd5eec3066458bee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>approximate solutions</topic><topic>Boussinesq equations</topic><topic>Conservation laws</topic><topic>fractional conservation laws</topic><topic>Graphical representations</topic><topic>Invariants</topic><topic>Lie group analysis</topic><topic>Lie groups</topic><topic>Power series</topic><topic>Shallow water</topic><topic>time fractional higher order nonlinear B‐B system</topic><topic>Water waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahioui, Mohamed</creatorcontrib><creatorcontrib>El Kinani, El Hassan</creatorcontrib><creatorcontrib>Ouhadan, Abdelaziz</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahioui, Mohamed</au><au>El Kinani, El Hassan</au><au>Ouhadan, Abdelaziz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Invariant analysis, approximate solutions, and conservation laws for the time fractional higher order Boussinesq–Burgers system</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2024-07-30</date><risdate>2024</risdate><volume>47</volume><issue>11</issue><spage>9137</spage><epage>9156</epage><pages>9137-9156</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In this paper, we employ the time fractional higher order nonlinear Boussinesq–Burgers system to investigate shallow water waves based on the Riemann–Liouville and Caputo fractional partial derivatives. The Lie algebra of infinitesimal generators associated with the symmetry groups that leave the studied system invariant is systematically constructed, and the similarity reductions are established. Furthermore, conserved quantities of the system under consideration are formulated. Next, the power series solution, including the convergence analysis, is obtained. Based on the fractional Sumudu–Adomian decomposition method, some approximate solutions are derived. Finally, in order to show the efficiency of the considered methods, the effect of the fractional order, as well as the dynamical behavior of solutions, numerical validation and graphical representations are designed.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.10063</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-0619-0867</orcidid><orcidid>https://orcid.org/0000-0002-3968-8143</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2024-07, Vol.47 (11), p.9137-9156
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_3065803734
source Wiley Online Library Journals Frontfile Complete
subjects approximate solutions
Boussinesq equations
Conservation laws
fractional conservation laws
Graphical representations
Invariants
Lie group analysis
Lie groups
Power series
Shallow water
time fractional higher order nonlinear B‐B system
Water waves
title Invariant analysis, approximate solutions, and conservation laws for the time fractional higher order Boussinesq–Burgers system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A55%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Invariant%20analysis,%20approximate%20solutions,%20and%20conservation%20laws%20for%20the%20time%20fractional%20higher%20order%20Boussinesq%E2%80%93Burgers%20system&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Rahioui,%20Mohamed&rft.date=2024-07-30&rft.volume=47&rft.issue=11&rft.spage=9137&rft.epage=9156&rft.pages=9137-9156&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.10063&rft_dat=%3Cproquest_cross%3E3065803734%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3065803734&rft_id=info:pmid/&rfr_iscdi=true