An Indocyanine Green‐Based Nanoprobe for In Vivo Detection of Cellular Senescence
There is an urgent need to improve conventional cancer‐treatments by preventing detrimental side effects, cancer recurrence and metastases. Recent studies have shown that presence of senescent cells in tissues treated with chemo‐ or radiotherapy can be used to predict the effectiveness of cancer tre...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie 2024-06, Vol.136 (25), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 25 |
container_start_page | |
container_title | Angewandte Chemie |
container_volume | 136 |
creator | Baker, Andrew G. Hartono, Muhamad Ou, Hui‐Ling Popov, Andrea Bistrović Brown, Emma L. Joseph, James Golinska, Monika González‐Gualda, Estela Macias, David Ge, Jianfeng Denholm, Mary Morsli, Samir Sanghera, Chandan Else, Thomas R. Greer, Heather F. Vernet, Aude Bohndiek, Sarah E. Muñoz‐Espín, Daniel Fruk, Ljiljana |
description | There is an urgent need to improve conventional cancer‐treatments by preventing detrimental side effects, cancer recurrence and metastases. Recent studies have shown that presence of senescent cells in tissues treated with chemo‐ or radiotherapy can be used to predict the effectiveness of cancer treatment. However, although the accumulation of senescent cells is one of the hallmarks of cancer, surprisingly little progress has been made in development of strategies for their detection in vivo. To address a lack of detection tools, we developed a biocompatible, injectable organic nanoprobe (NanoJagg), which is selectively taken up by senescent cells and accumulates in the lysosomes. The NanoJagg probe is obtained by self‐assembly of indocyanine green (ICG) dimers using a scalable manufacturing process and characterized by a unique spectral signature suitable for both photoacoustic tomography (PAT) and fluorescence imaging. In vitro, ex vivo and in vivo studies all indicate that NanoJaggs are a clinically translatable probe for detection of senescence and their PAT signal makes them suitable for longitudinal monitoring of the senescence burden in solid tumors after chemotherapy or radiotherapy.
Sound of Senescence: A nanostructured organic probe, NanoJaggs, can be used as photoacoustic contrast agent for in vivo imaging of the senescent cell burden in post‐chemotherapy tumors. Made of indocyanine green (ICG) dimers, 30 nm nanoparticles exploit an active endocytosis mechanism and increase the number of lysosomes to specifically light up senescent cells implicated in cancer initiation and progression. |
doi_str_mv | 10.1002/ange.202404885 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3065803721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3065803721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1575-4b6d29f8dd8ac641dff75f979faa6ab2cd497b263c20aa4104116bfbc59b05933</originalsourceid><addsrcrecordid>eNqFkD1PwzAQQC0EEuVjZbbEnHJ27CQeS4GCVJWhwGo5zhmlCnaxW1A3fgK_kV9CqiIYmW557-70CDljMGQA_ML4Zxxy4AJEVck9MmCSsywvZblPBgBCZBUX6pAcpbQAgIKXakDmI0_vfBPsxvjWI51ERP_18XlpEjZ0ZnxYxlAjdSH2HH1q3wK9whXaVRs8DY6OsevWnYl0jh6TRW_xhBw40yU8_ZnH5PHm-mF8m03vJ3fj0TSzTJYyE3XRcOWqpqmMLQRrnCulU6VyxhSm5rYRqqx5kVsOxggGgrGidrWVqgap8vyYnO_29i--rjGt9CKso-9P6hwKWUFectZTwx1lY0gpotPL2L6YuNEM9Dac3obTv-F6Qe2E97bDzT-0Hs0m13_uN4k-coo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3065803721</pqid></control><display><type>article</type><title>An Indocyanine Green‐Based Nanoprobe for In Vivo Detection of Cellular Senescence</title><source>Wiley Journals</source><creator>Baker, Andrew G. ; Hartono, Muhamad ; Ou, Hui‐Ling ; Popov, Andrea Bistrović ; Brown, Emma L. ; Joseph, James ; Golinska, Monika ; González‐Gualda, Estela ; Macias, David ; Ge, Jianfeng ; Denholm, Mary ; Morsli, Samir ; Sanghera, Chandan ; Else, Thomas R. ; Greer, Heather F. ; Vernet, Aude ; Bohndiek, Sarah E. ; Muñoz‐Espín, Daniel ; Fruk, Ljiljana</creator><creatorcontrib>Baker, Andrew G. ; Hartono, Muhamad ; Ou, Hui‐Ling ; Popov, Andrea Bistrović ; Brown, Emma L. ; Joseph, James ; Golinska, Monika ; González‐Gualda, Estela ; Macias, David ; Ge, Jianfeng ; Denholm, Mary ; Morsli, Samir ; Sanghera, Chandan ; Else, Thomas R. ; Greer, Heather F. ; Vernet, Aude ; Bohndiek, Sarah E. ; Muñoz‐Espín, Daniel ; Fruk, Ljiljana</creatorcontrib><description>There is an urgent need to improve conventional cancer‐treatments by preventing detrimental side effects, cancer recurrence and metastases. Recent studies have shown that presence of senescent cells in tissues treated with chemo‐ or radiotherapy can be used to predict the effectiveness of cancer treatment. However, although the accumulation of senescent cells is one of the hallmarks of cancer, surprisingly little progress has been made in development of strategies for their detection in vivo. To address a lack of detection tools, we developed a biocompatible, injectable organic nanoprobe (NanoJagg), which is selectively taken up by senescent cells and accumulates in the lysosomes. The NanoJagg probe is obtained by self‐assembly of indocyanine green (ICG) dimers using a scalable manufacturing process and characterized by a unique spectral signature suitable for both photoacoustic tomography (PAT) and fluorescence imaging. In vitro, ex vivo and in vivo studies all indicate that NanoJaggs are a clinically translatable probe for detection of senescence and their PAT signal makes them suitable for longitudinal monitoring of the senescence burden in solid tumors after chemotherapy or radiotherapy.
Sound of Senescence: A nanostructured organic probe, NanoJaggs, can be used as photoacoustic contrast agent for in vivo imaging of the senescent cell burden in post‐chemotherapy tumors. Made of indocyanine green (ICG) dimers, 30 nm nanoparticles exploit an active endocytosis mechanism and increase the number of lysosomes to specifically light up senescent cells implicated in cancer initiation and progression.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202404885</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Biocompatibility ; Cancer ; Cancer therapies ; Cellular senescence ; Chemotherapy ; Development strategies ; endocytosis ; ICG nanoprobe ; In vivo methods and tests ; Lysosomes ; Manufacturing industry ; Metastases ; Photoacoustic effect ; photoacoustic tomography (PAT) ; Radiation therapy ; Self-assembly ; Senescence ; Side effects ; Solid tumors ; Spectral signatures</subject><ispartof>Angewandte Chemie, 2024-06, Vol.136 (25), p.n/a</ispartof><rights>2024 The Authors. Angewandte Chemie published by Wiley-VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1575-4b6d29f8dd8ac641dff75f979faa6ab2cd497b263c20aa4104116bfbc59b05933</cites><orcidid>0000-0003-2104-5817</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202404885$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202404885$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Baker, Andrew G.</creatorcontrib><creatorcontrib>Hartono, Muhamad</creatorcontrib><creatorcontrib>Ou, Hui‐Ling</creatorcontrib><creatorcontrib>Popov, Andrea Bistrović</creatorcontrib><creatorcontrib>Brown, Emma L.</creatorcontrib><creatorcontrib>Joseph, James</creatorcontrib><creatorcontrib>Golinska, Monika</creatorcontrib><creatorcontrib>González‐Gualda, Estela</creatorcontrib><creatorcontrib>Macias, David</creatorcontrib><creatorcontrib>Ge, Jianfeng</creatorcontrib><creatorcontrib>Denholm, Mary</creatorcontrib><creatorcontrib>Morsli, Samir</creatorcontrib><creatorcontrib>Sanghera, Chandan</creatorcontrib><creatorcontrib>Else, Thomas R.</creatorcontrib><creatorcontrib>Greer, Heather F.</creatorcontrib><creatorcontrib>Vernet, Aude</creatorcontrib><creatorcontrib>Bohndiek, Sarah E.</creatorcontrib><creatorcontrib>Muñoz‐Espín, Daniel</creatorcontrib><creatorcontrib>Fruk, Ljiljana</creatorcontrib><title>An Indocyanine Green‐Based Nanoprobe for In Vivo Detection of Cellular Senescence</title><title>Angewandte Chemie</title><description>There is an urgent need to improve conventional cancer‐treatments by preventing detrimental side effects, cancer recurrence and metastases. Recent studies have shown that presence of senescent cells in tissues treated with chemo‐ or radiotherapy can be used to predict the effectiveness of cancer treatment. However, although the accumulation of senescent cells is one of the hallmarks of cancer, surprisingly little progress has been made in development of strategies for their detection in vivo. To address a lack of detection tools, we developed a biocompatible, injectable organic nanoprobe (NanoJagg), which is selectively taken up by senescent cells and accumulates in the lysosomes. The NanoJagg probe is obtained by self‐assembly of indocyanine green (ICG) dimers using a scalable manufacturing process and characterized by a unique spectral signature suitable for both photoacoustic tomography (PAT) and fluorescence imaging. In vitro, ex vivo and in vivo studies all indicate that NanoJaggs are a clinically translatable probe for detection of senescence and their PAT signal makes them suitable for longitudinal monitoring of the senescence burden in solid tumors after chemotherapy or radiotherapy.
Sound of Senescence: A nanostructured organic probe, NanoJaggs, can be used as photoacoustic contrast agent for in vivo imaging of the senescent cell burden in post‐chemotherapy tumors. Made of indocyanine green (ICG) dimers, 30 nm nanoparticles exploit an active endocytosis mechanism and increase the number of lysosomes to specifically light up senescent cells implicated in cancer initiation and progression.</description><subject>Biocompatibility</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Cellular senescence</subject><subject>Chemotherapy</subject><subject>Development strategies</subject><subject>endocytosis</subject><subject>ICG nanoprobe</subject><subject>In vivo methods and tests</subject><subject>Lysosomes</subject><subject>Manufacturing industry</subject><subject>Metastases</subject><subject>Photoacoustic effect</subject><subject>photoacoustic tomography (PAT)</subject><subject>Radiation therapy</subject><subject>Self-assembly</subject><subject>Senescence</subject><subject>Side effects</subject><subject>Solid tumors</subject><subject>Spectral signatures</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkD1PwzAQQC0EEuVjZbbEnHJ27CQeS4GCVJWhwGo5zhmlCnaxW1A3fgK_kV9CqiIYmW557-70CDljMGQA_ML4Zxxy4AJEVck9MmCSsywvZblPBgBCZBUX6pAcpbQAgIKXakDmI0_vfBPsxvjWI51ERP_18XlpEjZ0ZnxYxlAjdSH2HH1q3wK9whXaVRs8DY6OsevWnYl0jh6TRW_xhBw40yU8_ZnH5PHm-mF8m03vJ3fj0TSzTJYyE3XRcOWqpqmMLQRrnCulU6VyxhSm5rYRqqx5kVsOxggGgrGidrWVqgap8vyYnO_29i--rjGt9CKso-9P6hwKWUFectZTwx1lY0gpotPL2L6YuNEM9Dac3obTv-F6Qe2E97bDzT-0Hs0m13_uN4k-coo</recordid><startdate>20240617</startdate><enddate>20240617</enddate><creator>Baker, Andrew G.</creator><creator>Hartono, Muhamad</creator><creator>Ou, Hui‐Ling</creator><creator>Popov, Andrea Bistrović</creator><creator>Brown, Emma L.</creator><creator>Joseph, James</creator><creator>Golinska, Monika</creator><creator>González‐Gualda, Estela</creator><creator>Macias, David</creator><creator>Ge, Jianfeng</creator><creator>Denholm, Mary</creator><creator>Morsli, Samir</creator><creator>Sanghera, Chandan</creator><creator>Else, Thomas R.</creator><creator>Greer, Heather F.</creator><creator>Vernet, Aude</creator><creator>Bohndiek, Sarah E.</creator><creator>Muñoz‐Espín, Daniel</creator><creator>Fruk, Ljiljana</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2104-5817</orcidid></search><sort><creationdate>20240617</creationdate><title>An Indocyanine Green‐Based Nanoprobe for In Vivo Detection of Cellular Senescence</title><author>Baker, Andrew G. ; Hartono, Muhamad ; Ou, Hui‐Ling ; Popov, Andrea Bistrović ; Brown, Emma L. ; Joseph, James ; Golinska, Monika ; González‐Gualda, Estela ; Macias, David ; Ge, Jianfeng ; Denholm, Mary ; Morsli, Samir ; Sanghera, Chandan ; Else, Thomas R. ; Greer, Heather F. ; Vernet, Aude ; Bohndiek, Sarah E. ; Muñoz‐Espín, Daniel ; Fruk, Ljiljana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1575-4b6d29f8dd8ac641dff75f979faa6ab2cd497b263c20aa4104116bfbc59b05933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biocompatibility</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Cellular senescence</topic><topic>Chemotherapy</topic><topic>Development strategies</topic><topic>endocytosis</topic><topic>ICG nanoprobe</topic><topic>In vivo methods and tests</topic><topic>Lysosomes</topic><topic>Manufacturing industry</topic><topic>Metastases</topic><topic>Photoacoustic effect</topic><topic>photoacoustic tomography (PAT)</topic><topic>Radiation therapy</topic><topic>Self-assembly</topic><topic>Senescence</topic><topic>Side effects</topic><topic>Solid tumors</topic><topic>Spectral signatures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baker, Andrew G.</creatorcontrib><creatorcontrib>Hartono, Muhamad</creatorcontrib><creatorcontrib>Ou, Hui‐Ling</creatorcontrib><creatorcontrib>Popov, Andrea Bistrović</creatorcontrib><creatorcontrib>Brown, Emma L.</creatorcontrib><creatorcontrib>Joseph, James</creatorcontrib><creatorcontrib>Golinska, Monika</creatorcontrib><creatorcontrib>González‐Gualda, Estela</creatorcontrib><creatorcontrib>Macias, David</creatorcontrib><creatorcontrib>Ge, Jianfeng</creatorcontrib><creatorcontrib>Denholm, Mary</creatorcontrib><creatorcontrib>Morsli, Samir</creatorcontrib><creatorcontrib>Sanghera, Chandan</creatorcontrib><creatorcontrib>Else, Thomas R.</creatorcontrib><creatorcontrib>Greer, Heather F.</creatorcontrib><creatorcontrib>Vernet, Aude</creatorcontrib><creatorcontrib>Bohndiek, Sarah E.</creatorcontrib><creatorcontrib>Muñoz‐Espín, Daniel</creatorcontrib><creatorcontrib>Fruk, Ljiljana</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baker, Andrew G.</au><au>Hartono, Muhamad</au><au>Ou, Hui‐Ling</au><au>Popov, Andrea Bistrović</au><au>Brown, Emma L.</au><au>Joseph, James</au><au>Golinska, Monika</au><au>González‐Gualda, Estela</au><au>Macias, David</au><au>Ge, Jianfeng</au><au>Denholm, Mary</au><au>Morsli, Samir</au><au>Sanghera, Chandan</au><au>Else, Thomas R.</au><au>Greer, Heather F.</au><au>Vernet, Aude</au><au>Bohndiek, Sarah E.</au><au>Muñoz‐Espín, Daniel</au><au>Fruk, Ljiljana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Indocyanine Green‐Based Nanoprobe for In Vivo Detection of Cellular Senescence</atitle><jtitle>Angewandte Chemie</jtitle><date>2024-06-17</date><risdate>2024</risdate><volume>136</volume><issue>25</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>There is an urgent need to improve conventional cancer‐treatments by preventing detrimental side effects, cancer recurrence and metastases. Recent studies have shown that presence of senescent cells in tissues treated with chemo‐ or radiotherapy can be used to predict the effectiveness of cancer treatment. However, although the accumulation of senescent cells is one of the hallmarks of cancer, surprisingly little progress has been made in development of strategies for their detection in vivo. To address a lack of detection tools, we developed a biocompatible, injectable organic nanoprobe (NanoJagg), which is selectively taken up by senescent cells and accumulates in the lysosomes. The NanoJagg probe is obtained by self‐assembly of indocyanine green (ICG) dimers using a scalable manufacturing process and characterized by a unique spectral signature suitable for both photoacoustic tomography (PAT) and fluorescence imaging. In vitro, ex vivo and in vivo studies all indicate that NanoJaggs are a clinically translatable probe for detection of senescence and their PAT signal makes them suitable for longitudinal monitoring of the senescence burden in solid tumors after chemotherapy or radiotherapy.
Sound of Senescence: A nanostructured organic probe, NanoJaggs, can be used as photoacoustic contrast agent for in vivo imaging of the senescent cell burden in post‐chemotherapy tumors. Made of indocyanine green (ICG) dimers, 30 nm nanoparticles exploit an active endocytosis mechanism and increase the number of lysosomes to specifically light up senescent cells implicated in cancer initiation and progression.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202404885</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2104-5817</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-8249 |
ispartof | Angewandte Chemie, 2024-06, Vol.136 (25), p.n/a |
issn | 0044-8249 1521-3757 |
language | eng |
recordid | cdi_proquest_journals_3065803721 |
source | Wiley Journals |
subjects | Biocompatibility Cancer Cancer therapies Cellular senescence Chemotherapy Development strategies endocytosis ICG nanoprobe In vivo methods and tests Lysosomes Manufacturing industry Metastases Photoacoustic effect photoacoustic tomography (PAT) Radiation therapy Self-assembly Senescence Side effects Solid tumors Spectral signatures |
title | An Indocyanine Green‐Based Nanoprobe for In Vivo Detection of Cellular Senescence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T01%3A12%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Indocyanine%20Green%E2%80%90Based%20Nanoprobe%20for%20In%20Vivo%20Detection%20of%20Cellular%20Senescence&rft.jtitle=Angewandte%20Chemie&rft.au=Baker,%20Andrew%20G.&rft.date=2024-06-17&rft.volume=136&rft.issue=25&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202404885&rft_dat=%3Cproquest_cross%3E3065803721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3065803721&rft_id=info:pmid/&rfr_iscdi=true |