A cloud-edge-device collaborative offloading scheme with heterogeneous tasks and its performance evaluation

How to collaboratively offload tasks between user devices, edge networks (ENs), and cloud data centers is an interesting and challenging research topic. In this paper, we investigate the offloading decision, analytical modeling, and system parameter optimization problem in a collaborative cloud-edge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of information technology & electronic engineering 2024-05, Vol.25 (5), p.664-684
Hauptverfasser: Bai, Xiaojun, Zhang, Yang, Wu, Haixing, Wang, Yuting, Jin, Shunfu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 684
container_issue 5
container_start_page 664
container_title Frontiers of information technology & electronic engineering
container_volume 25
creator Bai, Xiaojun
Zhang, Yang
Wu, Haixing
Wang, Yuting
Jin, Shunfu
description How to collaboratively offload tasks between user devices, edge networks (ENs), and cloud data centers is an interesting and challenging research topic. In this paper, we investigate the offloading decision, analytical modeling, and system parameter optimization problem in a collaborative cloud-edge-device environment, aiming to trade off different performance measures. According to the differentiated delay requirements of tasks, we classify the tasks into delay-sensitive and delay-tolerant tasks. To meet the delay requirements of delay-sensitive tasks and process as many delay-tolerant tasks as possible, we propose a cloud-edge-device collaborative task offloading scheme, in which delay-sensitive and delay-tolerant tasks follow the access threshold policy and the loss policy, respectively. We establish a four-dimensional continuous-time Markov chain as the system model. By using the Gauss-Seidel method, we derive the stationary probability distribution of the system model. Accordingly, we present the blocking rate of delay-sensitive tasks and the average delay of these two types of tasks. Numerical experiments are conducted and analyzed to evaluate the system performance, and numerical simulations are presented to evaluate and validate the effectiveness of the proposed task offloading scheme. Finally, we optimize the access threshold in the EN buffer to obtain the minimum system cost with different proportions of delay-sensitive tasks.
doi_str_mv 10.1631/FITEE.2300128
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3065609690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3065510464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-6009e9a26129be13ffeb775069e5a553cc4a836cea7d6497f01e00d05511cbb93</originalsourceid><addsrcrecordid>eNqFkMFLwzAUh4MoOOaO3gOeO1_aJm2OY2w6GHiZ55KmL123rplJO_G_N7qJF8HTew--3_fgR8g9gykTCXtcrjaLxTROAFicX5FRDJJHMtzXPzvL01sy8X4HgRFMZjIfkf2M6tYOVYRVjVGFp0Yj1bZtVWmd6psTUmtMa1XVdDX1eosHpO9Nv6Vb7NHZGju0g6e98ntPVVfRpvf0iM5Yd1BdkOFJtUMw2e6O3BjVepxc5pi8Lheb-XO0fnlazWfrSMd53kcCQKJUsWCxLJElxmCZZRyERK44T7ROVZ4IjSqrRCozAwwBKuCcMV2WMhmTh7P36OzbgL4vdnZwXXhZJCC4ACkk_EdxBqlIAxWdKe2s9w5NcXTNQbmPgkHxVXzxXXxxKT7w0zPvA9fV6H6tfwc-AYoghLc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3065510464</pqid></control><display><type>article</type><title>A cloud-edge-device collaborative offloading scheme with heterogeneous tasks and its performance evaluation</title><source>SpringerLink (Online service)</source><source>Alma/SFX Local Collection</source><creator>Bai, Xiaojun ; Zhang, Yang ; Wu, Haixing ; Wang, Yuting ; Jin, Shunfu</creator><creatorcontrib>Bai, Xiaojun ; Zhang, Yang ; Wu, Haixing ; Wang, Yuting ; Jin, Shunfu</creatorcontrib><description>How to collaboratively offload tasks between user devices, edge networks (ENs), and cloud data centers is an interesting and challenging research topic. In this paper, we investigate the offloading decision, analytical modeling, and system parameter optimization problem in a collaborative cloud-edge-device environment, aiming to trade off different performance measures. According to the differentiated delay requirements of tasks, we classify the tasks into delay-sensitive and delay-tolerant tasks. To meet the delay requirements of delay-sensitive tasks and process as many delay-tolerant tasks as possible, we propose a cloud-edge-device collaborative task offloading scheme, in which delay-sensitive and delay-tolerant tasks follow the access threshold policy and the loss policy, respectively. We establish a four-dimensional continuous-time Markov chain as the system model. By using the Gauss-Seidel method, we derive the stationary probability distribution of the system model. Accordingly, we present the blocking rate of delay-sensitive tasks and the average delay of these two types of tasks. Numerical experiments are conducted and analyzed to evaluate the system performance, and numerical simulations are presented to evaluate and validate the effectiveness of the proposed task offloading scheme. Finally, we optimize the access threshold in the EN buffer to obtain the minimum system cost with different proportions of delay-sensitive tasks.</description><identifier>ISSN: 2095-9184</identifier><identifier>EISSN: 2095-9230</identifier><identifier>DOI: 10.1631/FITEE.2300128</identifier><language>eng</language><publisher>Hangzhou: Zhejiang University Press</publisher><subject>Cloud computing ; Collaboration ; Communications Engineering ; Computation offloading ; Computer Hardware ; Computer Science ; Computer Systems Organization and Communication Networks ; Delay ; Edge computing ; Electrical Engineering ; Electronics and Microelectronics ; Gauss-Seidel method ; Instrumentation ; Markov chains ; Networks ; Performance evaluation ; Research Article</subject><ispartof>Frontiers of information technology &amp; electronic engineering, 2024-05, Vol.25 (5), p.664-684</ispartof><rights>Zhejiang University Press 2023</rights><rights>Zhejiang University Press 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c288t-6009e9a26129be13ffeb775069e5a553cc4a836cea7d6497f01e00d05511cbb93</cites><orcidid>0000-0002-5845-5601</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1631/FITEE.2300128$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1631/FITEE.2300128$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bai, Xiaojun</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Wu, Haixing</creatorcontrib><creatorcontrib>Wang, Yuting</creatorcontrib><creatorcontrib>Jin, Shunfu</creatorcontrib><title>A cloud-edge-device collaborative offloading scheme with heterogeneous tasks and its performance evaluation</title><title>Frontiers of information technology &amp; electronic engineering</title><addtitle>Front Inform Technol Electron Eng</addtitle><description>How to collaboratively offload tasks between user devices, edge networks (ENs), and cloud data centers is an interesting and challenging research topic. In this paper, we investigate the offloading decision, analytical modeling, and system parameter optimization problem in a collaborative cloud-edge-device environment, aiming to trade off different performance measures. According to the differentiated delay requirements of tasks, we classify the tasks into delay-sensitive and delay-tolerant tasks. To meet the delay requirements of delay-sensitive tasks and process as many delay-tolerant tasks as possible, we propose a cloud-edge-device collaborative task offloading scheme, in which delay-sensitive and delay-tolerant tasks follow the access threshold policy and the loss policy, respectively. We establish a four-dimensional continuous-time Markov chain as the system model. By using the Gauss-Seidel method, we derive the stationary probability distribution of the system model. Accordingly, we present the blocking rate of delay-sensitive tasks and the average delay of these two types of tasks. Numerical experiments are conducted and analyzed to evaluate the system performance, and numerical simulations are presented to evaluate and validate the effectiveness of the proposed task offloading scheme. Finally, we optimize the access threshold in the EN buffer to obtain the minimum system cost with different proportions of delay-sensitive tasks.</description><subject>Cloud computing</subject><subject>Collaboration</subject><subject>Communications Engineering</subject><subject>Computation offloading</subject><subject>Computer Hardware</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Delay</subject><subject>Edge computing</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Gauss-Seidel method</subject><subject>Instrumentation</subject><subject>Markov chains</subject><subject>Networks</subject><subject>Performance evaluation</subject><subject>Research Article</subject><issn>2095-9184</issn><issn>2095-9230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMFLwzAUh4MoOOaO3gOeO1_aJm2OY2w6GHiZ55KmL123rplJO_G_N7qJF8HTew--3_fgR8g9gykTCXtcrjaLxTROAFicX5FRDJJHMtzXPzvL01sy8X4HgRFMZjIfkf2M6tYOVYRVjVGFp0Yj1bZtVWmd6psTUmtMa1XVdDX1eosHpO9Nv6Vb7NHZGju0g6e98ntPVVfRpvf0iM5Yd1BdkOFJtUMw2e6O3BjVepxc5pi8Lheb-XO0fnlazWfrSMd53kcCQKJUsWCxLJElxmCZZRyERK44T7ROVZ4IjSqrRCozAwwBKuCcMV2WMhmTh7P36OzbgL4vdnZwXXhZJCC4ACkk_EdxBqlIAxWdKe2s9w5NcXTNQbmPgkHxVXzxXXxxKT7w0zPvA9fV6H6tfwc-AYoghLc</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Bai, Xiaojun</creator><creator>Zhang, Yang</creator><creator>Wu, Haixing</creator><creator>Wang, Yuting</creator><creator>Jin, Shunfu</creator><general>Zhejiang University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-5845-5601</orcidid></search><sort><creationdate>20240501</creationdate><title>A cloud-edge-device collaborative offloading scheme with heterogeneous tasks and its performance evaluation</title><author>Bai, Xiaojun ; Zhang, Yang ; Wu, Haixing ; Wang, Yuting ; Jin, Shunfu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-6009e9a26129be13ffeb775069e5a553cc4a836cea7d6497f01e00d05511cbb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cloud computing</topic><topic>Collaboration</topic><topic>Communications Engineering</topic><topic>Computation offloading</topic><topic>Computer Hardware</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Delay</topic><topic>Edge computing</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Gauss-Seidel method</topic><topic>Instrumentation</topic><topic>Markov chains</topic><topic>Networks</topic><topic>Performance evaluation</topic><topic>Research Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Xiaojun</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Wu, Haixing</creatorcontrib><creatorcontrib>Wang, Yuting</creatorcontrib><creatorcontrib>Jin, Shunfu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Frontiers of information technology &amp; electronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Xiaojun</au><au>Zhang, Yang</au><au>Wu, Haixing</au><au>Wang, Yuting</au><au>Jin, Shunfu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A cloud-edge-device collaborative offloading scheme with heterogeneous tasks and its performance evaluation</atitle><jtitle>Frontiers of information technology &amp; electronic engineering</jtitle><stitle>Front Inform Technol Electron Eng</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>25</volume><issue>5</issue><spage>664</spage><epage>684</epage><pages>664-684</pages><issn>2095-9184</issn><eissn>2095-9230</eissn><abstract>How to collaboratively offload tasks between user devices, edge networks (ENs), and cloud data centers is an interesting and challenging research topic. In this paper, we investigate the offloading decision, analytical modeling, and system parameter optimization problem in a collaborative cloud-edge-device environment, aiming to trade off different performance measures. According to the differentiated delay requirements of tasks, we classify the tasks into delay-sensitive and delay-tolerant tasks. To meet the delay requirements of delay-sensitive tasks and process as many delay-tolerant tasks as possible, we propose a cloud-edge-device collaborative task offloading scheme, in which delay-sensitive and delay-tolerant tasks follow the access threshold policy and the loss policy, respectively. We establish a four-dimensional continuous-time Markov chain as the system model. By using the Gauss-Seidel method, we derive the stationary probability distribution of the system model. Accordingly, we present the blocking rate of delay-sensitive tasks and the average delay of these two types of tasks. Numerical experiments are conducted and analyzed to evaluate the system performance, and numerical simulations are presented to evaluate and validate the effectiveness of the proposed task offloading scheme. Finally, we optimize the access threshold in the EN buffer to obtain the minimum system cost with different proportions of delay-sensitive tasks.</abstract><cop>Hangzhou</cop><pub>Zhejiang University Press</pub><doi>10.1631/FITEE.2300128</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-5845-5601</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2095-9184
ispartof Frontiers of information technology & electronic engineering, 2024-05, Vol.25 (5), p.664-684
issn 2095-9184
2095-9230
language eng
recordid cdi_proquest_journals_3065609690
source SpringerLink (Online service); Alma/SFX Local Collection
subjects Cloud computing
Collaboration
Communications Engineering
Computation offloading
Computer Hardware
Computer Science
Computer Systems Organization and Communication Networks
Delay
Edge computing
Electrical Engineering
Electronics and Microelectronics
Gauss-Seidel method
Instrumentation
Markov chains
Networks
Performance evaluation
Research Article
title A cloud-edge-device collaborative offloading scheme with heterogeneous tasks and its performance evaluation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A37%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20cloud-edge-device%20collaborative%20offloading%20scheme%20with%20heterogeneous%20tasks%20and%20its%20performance%20evaluation&rft.jtitle=Frontiers%20of%20information%20technology%20&%20electronic%20engineering&rft.au=Bai,%20Xiaojun&rft.date=2024-05-01&rft.volume=25&rft.issue=5&rft.spage=664&rft.epage=684&rft.pages=664-684&rft.issn=2095-9184&rft.eissn=2095-9230&rft_id=info:doi/10.1631/FITEE.2300128&rft_dat=%3Cproquest_cross%3E3065510464%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3065510464&rft_id=info:pmid/&rfr_iscdi=true