A cloud-edge-device collaborative offloading scheme with heterogeneous tasks and its performance evaluation
How to collaboratively offload tasks between user devices, edge networks (ENs), and cloud data centers is an interesting and challenging research topic. In this paper, we investigate the offloading decision, analytical modeling, and system parameter optimization problem in a collaborative cloud-edge...
Gespeichert in:
Veröffentlicht in: | Frontiers of information technology & electronic engineering 2024-05, Vol.25 (5), p.664-684 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 684 |
---|---|
container_issue | 5 |
container_start_page | 664 |
container_title | Frontiers of information technology & electronic engineering |
container_volume | 25 |
creator | Bai, Xiaojun Zhang, Yang Wu, Haixing Wang, Yuting Jin, Shunfu |
description | How to collaboratively offload tasks between user devices, edge networks (ENs), and cloud data centers is an interesting and challenging research topic. In this paper, we investigate the offloading decision, analytical modeling, and system parameter optimization problem in a collaborative cloud-edge-device environment, aiming to trade off different performance measures. According to the differentiated delay requirements of tasks, we classify the tasks into delay-sensitive and delay-tolerant tasks. To meet the delay requirements of delay-sensitive tasks and process as many delay-tolerant tasks as possible, we propose a cloud-edge-device collaborative task offloading scheme, in which delay-sensitive and delay-tolerant tasks follow the access threshold policy and the loss policy, respectively. We establish a four-dimensional continuous-time Markov chain as the system model. By using the Gauss-Seidel method, we derive the stationary probability distribution of the system model. Accordingly, we present the blocking rate of delay-sensitive tasks and the average delay of these two types of tasks. Numerical experiments are conducted and analyzed to evaluate the system performance, and numerical simulations are presented to evaluate and validate the effectiveness of the proposed task offloading scheme. Finally, we optimize the access threshold in the EN buffer to obtain the minimum system cost with different proportions of delay-sensitive tasks. |
doi_str_mv | 10.1631/FITEE.2300128 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3065609690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3065510464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-6009e9a26129be13ffeb775069e5a553cc4a836cea7d6497f01e00d05511cbb93</originalsourceid><addsrcrecordid>eNqFkMFLwzAUh4MoOOaO3gOeO1_aJm2OY2w6GHiZ55KmL123rplJO_G_N7qJF8HTew--3_fgR8g9gykTCXtcrjaLxTROAFicX5FRDJJHMtzXPzvL01sy8X4HgRFMZjIfkf2M6tYOVYRVjVGFp0Yj1bZtVWmd6psTUmtMa1XVdDX1eosHpO9Nv6Vb7NHZGju0g6e98ntPVVfRpvf0iM5Yd1BdkOFJtUMw2e6O3BjVepxc5pi8Lheb-XO0fnlazWfrSMd53kcCQKJUsWCxLJElxmCZZRyERK44T7ROVZ4IjSqrRCozAwwBKuCcMV2WMhmTh7P36OzbgL4vdnZwXXhZJCC4ACkk_EdxBqlIAxWdKe2s9w5NcXTNQbmPgkHxVXzxXXxxKT7w0zPvA9fV6H6tfwc-AYoghLc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3065510464</pqid></control><display><type>article</type><title>A cloud-edge-device collaborative offloading scheme with heterogeneous tasks and its performance evaluation</title><source>SpringerLink (Online service)</source><source>Alma/SFX Local Collection</source><creator>Bai, Xiaojun ; Zhang, Yang ; Wu, Haixing ; Wang, Yuting ; Jin, Shunfu</creator><creatorcontrib>Bai, Xiaojun ; Zhang, Yang ; Wu, Haixing ; Wang, Yuting ; Jin, Shunfu</creatorcontrib><description>How to collaboratively offload tasks between user devices, edge networks (ENs), and cloud data centers is an interesting and challenging research topic. In this paper, we investigate the offloading decision, analytical modeling, and system parameter optimization problem in a collaborative cloud-edge-device environment, aiming to trade off different performance measures. According to the differentiated delay requirements of tasks, we classify the tasks into delay-sensitive and delay-tolerant tasks. To meet the delay requirements of delay-sensitive tasks and process as many delay-tolerant tasks as possible, we propose a cloud-edge-device collaborative task offloading scheme, in which delay-sensitive and delay-tolerant tasks follow the access threshold policy and the loss policy, respectively. We establish a four-dimensional continuous-time Markov chain as the system model. By using the Gauss-Seidel method, we derive the stationary probability distribution of the system model. Accordingly, we present the blocking rate of delay-sensitive tasks and the average delay of these two types of tasks. Numerical experiments are conducted and analyzed to evaluate the system performance, and numerical simulations are presented to evaluate and validate the effectiveness of the proposed task offloading scheme. Finally, we optimize the access threshold in the EN buffer to obtain the minimum system cost with different proportions of delay-sensitive tasks.</description><identifier>ISSN: 2095-9184</identifier><identifier>EISSN: 2095-9230</identifier><identifier>DOI: 10.1631/FITEE.2300128</identifier><language>eng</language><publisher>Hangzhou: Zhejiang University Press</publisher><subject>Cloud computing ; Collaboration ; Communications Engineering ; Computation offloading ; Computer Hardware ; Computer Science ; Computer Systems Organization and Communication Networks ; Delay ; Edge computing ; Electrical Engineering ; Electronics and Microelectronics ; Gauss-Seidel method ; Instrumentation ; Markov chains ; Networks ; Performance evaluation ; Research Article</subject><ispartof>Frontiers of information technology & electronic engineering, 2024-05, Vol.25 (5), p.664-684</ispartof><rights>Zhejiang University Press 2023</rights><rights>Zhejiang University Press 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c288t-6009e9a26129be13ffeb775069e5a553cc4a836cea7d6497f01e00d05511cbb93</cites><orcidid>0000-0002-5845-5601</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1631/FITEE.2300128$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1631/FITEE.2300128$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bai, Xiaojun</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Wu, Haixing</creatorcontrib><creatorcontrib>Wang, Yuting</creatorcontrib><creatorcontrib>Jin, Shunfu</creatorcontrib><title>A cloud-edge-device collaborative offloading scheme with heterogeneous tasks and its performance evaluation</title><title>Frontiers of information technology & electronic engineering</title><addtitle>Front Inform Technol Electron Eng</addtitle><description>How to collaboratively offload tasks between user devices, edge networks (ENs), and cloud data centers is an interesting and challenging research topic. In this paper, we investigate the offloading decision, analytical modeling, and system parameter optimization problem in a collaborative cloud-edge-device environment, aiming to trade off different performance measures. According to the differentiated delay requirements of tasks, we classify the tasks into delay-sensitive and delay-tolerant tasks. To meet the delay requirements of delay-sensitive tasks and process as many delay-tolerant tasks as possible, we propose a cloud-edge-device collaborative task offloading scheme, in which delay-sensitive and delay-tolerant tasks follow the access threshold policy and the loss policy, respectively. We establish a four-dimensional continuous-time Markov chain as the system model. By using the Gauss-Seidel method, we derive the stationary probability distribution of the system model. Accordingly, we present the blocking rate of delay-sensitive tasks and the average delay of these two types of tasks. Numerical experiments are conducted and analyzed to evaluate the system performance, and numerical simulations are presented to evaluate and validate the effectiveness of the proposed task offloading scheme. Finally, we optimize the access threshold in the EN buffer to obtain the minimum system cost with different proportions of delay-sensitive tasks.</description><subject>Cloud computing</subject><subject>Collaboration</subject><subject>Communications Engineering</subject><subject>Computation offloading</subject><subject>Computer Hardware</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Delay</subject><subject>Edge computing</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Gauss-Seidel method</subject><subject>Instrumentation</subject><subject>Markov chains</subject><subject>Networks</subject><subject>Performance evaluation</subject><subject>Research Article</subject><issn>2095-9184</issn><issn>2095-9230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMFLwzAUh4MoOOaO3gOeO1_aJm2OY2w6GHiZ55KmL123rplJO_G_N7qJF8HTew--3_fgR8g9gykTCXtcrjaLxTROAFicX5FRDJJHMtzXPzvL01sy8X4HgRFMZjIfkf2M6tYOVYRVjVGFp0Yj1bZtVWmd6psTUmtMa1XVdDX1eosHpO9Nv6Vb7NHZGju0g6e98ntPVVfRpvf0iM5Yd1BdkOFJtUMw2e6O3BjVepxc5pi8Lheb-XO0fnlazWfrSMd53kcCQKJUsWCxLJElxmCZZRyERK44T7ROVZ4IjSqrRCozAwwBKuCcMV2WMhmTh7P36OzbgL4vdnZwXXhZJCC4ACkk_EdxBqlIAxWdKe2s9w5NcXTNQbmPgkHxVXzxXXxxKT7w0zPvA9fV6H6tfwc-AYoghLc</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Bai, Xiaojun</creator><creator>Zhang, Yang</creator><creator>Wu, Haixing</creator><creator>Wang, Yuting</creator><creator>Jin, Shunfu</creator><general>Zhejiang University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-5845-5601</orcidid></search><sort><creationdate>20240501</creationdate><title>A cloud-edge-device collaborative offloading scheme with heterogeneous tasks and its performance evaluation</title><author>Bai, Xiaojun ; Zhang, Yang ; Wu, Haixing ; Wang, Yuting ; Jin, Shunfu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-6009e9a26129be13ffeb775069e5a553cc4a836cea7d6497f01e00d05511cbb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cloud computing</topic><topic>Collaboration</topic><topic>Communications Engineering</topic><topic>Computation offloading</topic><topic>Computer Hardware</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Delay</topic><topic>Edge computing</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Gauss-Seidel method</topic><topic>Instrumentation</topic><topic>Markov chains</topic><topic>Networks</topic><topic>Performance evaluation</topic><topic>Research Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Xiaojun</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Wu, Haixing</creatorcontrib><creatorcontrib>Wang, Yuting</creatorcontrib><creatorcontrib>Jin, Shunfu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Frontiers of information technology & electronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Xiaojun</au><au>Zhang, Yang</au><au>Wu, Haixing</au><au>Wang, Yuting</au><au>Jin, Shunfu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A cloud-edge-device collaborative offloading scheme with heterogeneous tasks and its performance evaluation</atitle><jtitle>Frontiers of information technology & electronic engineering</jtitle><stitle>Front Inform Technol Electron Eng</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>25</volume><issue>5</issue><spage>664</spage><epage>684</epage><pages>664-684</pages><issn>2095-9184</issn><eissn>2095-9230</eissn><abstract>How to collaboratively offload tasks between user devices, edge networks (ENs), and cloud data centers is an interesting and challenging research topic. In this paper, we investigate the offloading decision, analytical modeling, and system parameter optimization problem in a collaborative cloud-edge-device environment, aiming to trade off different performance measures. According to the differentiated delay requirements of tasks, we classify the tasks into delay-sensitive and delay-tolerant tasks. To meet the delay requirements of delay-sensitive tasks and process as many delay-tolerant tasks as possible, we propose a cloud-edge-device collaborative task offloading scheme, in which delay-sensitive and delay-tolerant tasks follow the access threshold policy and the loss policy, respectively. We establish a four-dimensional continuous-time Markov chain as the system model. By using the Gauss-Seidel method, we derive the stationary probability distribution of the system model. Accordingly, we present the blocking rate of delay-sensitive tasks and the average delay of these two types of tasks. Numerical experiments are conducted and analyzed to evaluate the system performance, and numerical simulations are presented to evaluate and validate the effectiveness of the proposed task offloading scheme. Finally, we optimize the access threshold in the EN buffer to obtain the minimum system cost with different proportions of delay-sensitive tasks.</abstract><cop>Hangzhou</cop><pub>Zhejiang University Press</pub><doi>10.1631/FITEE.2300128</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-5845-5601</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-9184 |
ispartof | Frontiers of information technology & electronic engineering, 2024-05, Vol.25 (5), p.664-684 |
issn | 2095-9184 2095-9230 |
language | eng |
recordid | cdi_proquest_journals_3065609690 |
source | SpringerLink (Online service); Alma/SFX Local Collection |
subjects | Cloud computing Collaboration Communications Engineering Computation offloading Computer Hardware Computer Science Computer Systems Organization and Communication Networks Delay Edge computing Electrical Engineering Electronics and Microelectronics Gauss-Seidel method Instrumentation Markov chains Networks Performance evaluation Research Article |
title | A cloud-edge-device collaborative offloading scheme with heterogeneous tasks and its performance evaluation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A37%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20cloud-edge-device%20collaborative%20offloading%20scheme%20with%20heterogeneous%20tasks%20and%20its%20performance%20evaluation&rft.jtitle=Frontiers%20of%20information%20technology%20&%20electronic%20engineering&rft.au=Bai,%20Xiaojun&rft.date=2024-05-01&rft.volume=25&rft.issue=5&rft.spage=664&rft.epage=684&rft.pages=664-684&rft.issn=2095-9184&rft.eissn=2095-9230&rft_id=info:doi/10.1631/FITEE.2300128&rft_dat=%3Cproquest_cross%3E3065510464%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3065510464&rft_id=info:pmid/&rfr_iscdi=true |