Stabilization of unstable trajectories in discrete and continuous fractional order dynamical systems

A novel technique that is used to stabilize unstable trajectories in nonlinear dynamical systems is presented. The con-structed technique depends on specific choice of initial conditions which is achieved by employing the notion of H-rank for the algebraic complexity evaluation of transient processe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Telksniene, Inga
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 3094
creator Telksniene, Inga
description A novel technique that is used to stabilize unstable trajectories in nonlinear dynamical systems is presented. The con-structed technique depends on specific choice of initial conditions which is achieved by employing the notion of H-rank for the algebraic complexity evaluation of transient processes. The efficacy of the presented stabilization technique is shown for the frac-tional difference logistic map as well as driven fractional nonlinear pendulum dissipation.
doi_str_mv 10.1063/5.0213458
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3065470176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3065470176</sourcerecordid><originalsourceid>FETCH-LOGICAL-p148t-1923ad107073d111b041de5befbfdd2617409a53aa949b1bd3a6e1f779ad34923</originalsourceid><addsrcrecordid>eNotkE9LAzEQxYMoWKsHv0HAm7A1s0k2zVGK_6DgQQVvYXaThZRtUpPsoX56t7an4Q3vN8x7hNwCWwBr-INcsBq4kMszMgMpoVINNOdkxpgWVS349yW5ynnDWK2VWs6I_SjY-sH_YvEx0NjTMeRpNThaEm5cV2LyLlMfqPW5S644isHSLobiwxjHTPuE3QHGgcZkXaJ2H3Dru0nnfS5um6_JRY9DdjenOSdfz0-fq9dq_f7ytnpcVzsQy1KBrjlaYIopbgGgZQKsk63r297augElmEbJEbXQLbSWY-OgV0qj5WKC5-TueHeX4s_ocjGbOKbpsWw4a6RQDFQzue6Prtz58h_b7JLfYtobYObQopHm1CL_A4AHZfQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3065470176</pqid></control><display><type>conference_proceeding</type><title>Stabilization of unstable trajectories in discrete and continuous fractional order dynamical systems</title><source>AIP Journals Complete</source><creator>Telksniene, Inga</creator><contributor>Tsitouras, Charalambos ; Simos, Theodore</contributor><creatorcontrib>Telksniene, Inga ; Tsitouras, Charalambos ; Simos, Theodore</creatorcontrib><description>A novel technique that is used to stabilize unstable trajectories in nonlinear dynamical systems is presented. The con-structed technique depends on specific choice of initial conditions which is achieved by employing the notion of H-rank for the algebraic complexity evaluation of transient processes. The efficacy of the presented stabilization technique is shown for the frac-tional difference logistic map as well as driven fractional nonlinear pendulum dissipation.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0213458</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Dynamical systems ; Initial conditions ; Nonlinear systems ; Stabilization</subject><ispartof>AIP conference proceedings, 2024, Vol.3094 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0213458$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4497,23910,23911,25119,27903,27904,76131</link.rule.ids></links><search><contributor>Tsitouras, Charalambos</contributor><contributor>Simos, Theodore</contributor><creatorcontrib>Telksniene, Inga</creatorcontrib><title>Stabilization of unstable trajectories in discrete and continuous fractional order dynamical systems</title><title>AIP conference proceedings</title><description>A novel technique that is used to stabilize unstable trajectories in nonlinear dynamical systems is presented. The con-structed technique depends on specific choice of initial conditions which is achieved by employing the notion of H-rank for the algebraic complexity evaluation of transient processes. The efficacy of the presented stabilization technique is shown for the frac-tional difference logistic map as well as driven fractional nonlinear pendulum dissipation.</description><subject>Dynamical systems</subject><subject>Initial conditions</subject><subject>Nonlinear systems</subject><subject>Stabilization</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE9LAzEQxYMoWKsHv0HAm7A1s0k2zVGK_6DgQQVvYXaThZRtUpPsoX56t7an4Q3vN8x7hNwCWwBr-INcsBq4kMszMgMpoVINNOdkxpgWVS349yW5ynnDWK2VWs6I_SjY-sH_YvEx0NjTMeRpNThaEm5cV2LyLlMfqPW5S644isHSLobiwxjHTPuE3QHGgcZkXaJ2H3Dru0nnfS5um6_JRY9DdjenOSdfz0-fq9dq_f7ytnpcVzsQy1KBrjlaYIopbgGgZQKsk63r297augElmEbJEbXQLbSWY-OgV0qj5WKC5-TueHeX4s_ocjGbOKbpsWw4a6RQDFQzue6Prtz58h_b7JLfYtobYObQopHm1CL_A4AHZfQ</recordid><startdate>20240607</startdate><enddate>20240607</enddate><creator>Telksniene, Inga</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240607</creationdate><title>Stabilization of unstable trajectories in discrete and continuous fractional order dynamical systems</title><author>Telksniene, Inga</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p148t-1923ad107073d111b041de5befbfdd2617409a53aa949b1bd3a6e1f779ad34923</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Dynamical systems</topic><topic>Initial conditions</topic><topic>Nonlinear systems</topic><topic>Stabilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Telksniene, Inga</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Telksniene, Inga</au><au>Tsitouras, Charalambos</au><au>Simos, Theodore</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Stabilization of unstable trajectories in discrete and continuous fractional order dynamical systems</atitle><btitle>AIP conference proceedings</btitle><date>2024-06-07</date><risdate>2024</risdate><volume>3094</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>A novel technique that is used to stabilize unstable trajectories in nonlinear dynamical systems is presented. The con-structed technique depends on specific choice of initial conditions which is achieved by employing the notion of H-rank for the algebraic complexity evaluation of transient processes. The efficacy of the presented stabilization technique is shown for the frac-tional difference logistic map as well as driven fractional nonlinear pendulum dissipation.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0213458</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.3094 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_3065470176
source AIP Journals Complete
subjects Dynamical systems
Initial conditions
Nonlinear systems
Stabilization
title Stabilization of unstable trajectories in discrete and continuous fractional order dynamical systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T13%3A00%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Stabilization%20of%20unstable%20trajectories%20in%20discrete%20and%20continuous%20fractional%20order%20dynamical%20systems&rft.btitle=AIP%20conference%20proceedings&rft.au=Telksniene,%20Inga&rft.date=2024-06-07&rft.volume=3094&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0213458&rft_dat=%3Cproquest_scita%3E3065470176%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3065470176&rft_id=info:pmid/&rfr_iscdi=true