Multimodal Renewable Energy Hybrid Supply Optimization Model Based on Heterogeneous Cloud Wireless Access

With the increasing emphasis on environmental issues, the utilization of renewable energy has been recognized as a feasible solution to address the energy crisis and reduce environmental pollution. In view of this, this article proposes a multi-modal renewable energy hybrid power supply optimization...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.78286-78303
Hauptverfasser: Tian, Feng, Wang, Hongjiang, Jiang, He, Zhao, Baida
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 78303
container_issue
container_start_page 78286
container_title IEEE access
container_volume 12
creator Tian, Feng
Wang, Hongjiang
Jiang, He
Zhao, Baida
description With the increasing emphasis on environmental issues, the utilization of renewable energy has been recognized as a feasible solution to address the energy crisis and reduce environmental pollution. In view of this, this article proposes a multi-modal renewable energy hybrid power supply optimization model based on heterogeneous cloud wireless access. The model innovatively combines heterogeneous cloud wireless access technology and various intelligent optimization algorithms, including k-clustering algorithm, particle swarm optimization algorithm, and whale optimization algorithm, forming a hybrid optimization algorithm. In order to comprehensively evaluate the actual performance of the model, this study recruited 20 experts to provide detailed ratings on four core dimensions: cost-benefit ratio, reliability, robustness, and user satisfaction. The results showed that the model scored 95.1, 96.4, 95.6, and 96.2 in the four dimensions of cost-benefit ratio, reliability indicators, robustness, and user satisfaction, respectively. This series of significant data not only confirms the theoretical superiority of the model, but also demonstrates its strong potential and practical value in practical applications. In summary, this study provides a promising and innovative solution for the field of renewable energy supply.
doi_str_mv 10.1109/ACCESS.2024.3407726
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3065464257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10542731</ieee_id><doaj_id>oai_doaj_org_article_b949e6374c634cf0a70369e567cc96a0</doaj_id><sourcerecordid>3065464257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-f099358eccb40b6bad9242b1f26cab49468660985e92e6e8e394f26cf5cd0b883</originalsourceid><addsrcrecordid>eNpNUV1LIzEUHRaFFfUX7D4EfG43k6-ZPNahWsEiWJd9DEnmTkmJzZjMIPXXb-oU8b7cr3POvXCK4leJ52WJ5Z9F0yw3mznBhM0pw1VFxI_igpRCziin4uxb_bO4TmmHc9R5xKuLwq1HP7jX0GqPnmEP79p4QMs9xO0BrQ4muhZtxr73B_TUZ6D70IMLe7QOLXh0qxO0KLcrGCCGbRYIY0KND2OL_rkIHlJCC2tzuirOO-0TXJ_yZfH3bvnSrGaPT_cPzeJxZkkth1mHpaS8BmsNw0YY3UrCiCk7Iqw2TDJRC4FlzUESEFADley467htsalrelk8TLpt0DvVR_eq40EF7dTnIMSt0nFw1oMykkkQtGJWUGY7rCtMhQQuKmul0Dhr3UxafQxvI6RB7cIY9_l9RbHgTDDCq4yiE8rGkFKE7utqidXRIjVZpI4WqZNFmfV7YjkA-MbgjFS0pP8BxUSNPw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3065464257</pqid></control><display><type>article</type><title>Multimodal Renewable Energy Hybrid Supply Optimization Model Based on Heterogeneous Cloud Wireless Access</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Tian, Feng ; Wang, Hongjiang ; Jiang, He ; Zhao, Baida</creator><creatorcontrib>Tian, Feng ; Wang, Hongjiang ; Jiang, He ; Zhao, Baida</creatorcontrib><description>With the increasing emphasis on environmental issues, the utilization of renewable energy has been recognized as a feasible solution to address the energy crisis and reduce environmental pollution. In view of this, this article proposes a multi-modal renewable energy hybrid power supply optimization model based on heterogeneous cloud wireless access. The model innovatively combines heterogeneous cloud wireless access technology and various intelligent optimization algorithms, including k-clustering algorithm, particle swarm optimization algorithm, and whale optimization algorithm, forming a hybrid optimization algorithm. In order to comprehensively evaluate the actual performance of the model, this study recruited 20 experts to provide detailed ratings on four core dimensions: cost-benefit ratio, reliability, robustness, and user satisfaction. The results showed that the model scored 95.1, 96.4, 95.6, and 96.2 in the four dimensions of cost-benefit ratio, reliability indicators, robustness, and user satisfaction, respectively. This series of significant data not only confirms the theoretical superiority of the model, but also demonstrates its strong potential and practical value in practical applications. In summary, this study provides a promising and innovative solution for the field of renewable energy supply.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3407726</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Cloud computing ; Clustering ; Clustering algorithms ; Cost benefit analysis ; energy supply optimization ; heterogeneous cloud radio access ; Heuristic algorithms ; K-clustering algorithm ; Optimization ; Optimization algorithms ; Optimization models ; Particle swarm optimization ; particle swarm optimization algorithm ; Reliability ; Renewable energy ; Renewable energy sources ; Renewable resources ; Robustness (mathematics) ; User satisfaction ; Whale optimization algorithms ; Wireless communication ; WOA algorithm</subject><ispartof>IEEE access, 2024, Vol.12, p.78286-78303</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-f099358eccb40b6bad9242b1f26cab49468660985e92e6e8e394f26cf5cd0b883</cites><orcidid>0009-0000-8303-5812</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10542731$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4021,27631,27921,27922,27923,54931</link.rule.ids></links><search><creatorcontrib>Tian, Feng</creatorcontrib><creatorcontrib>Wang, Hongjiang</creatorcontrib><creatorcontrib>Jiang, He</creatorcontrib><creatorcontrib>Zhao, Baida</creatorcontrib><title>Multimodal Renewable Energy Hybrid Supply Optimization Model Based on Heterogeneous Cloud Wireless Access</title><title>IEEE access</title><addtitle>Access</addtitle><description>With the increasing emphasis on environmental issues, the utilization of renewable energy has been recognized as a feasible solution to address the energy crisis and reduce environmental pollution. In view of this, this article proposes a multi-modal renewable energy hybrid power supply optimization model based on heterogeneous cloud wireless access. The model innovatively combines heterogeneous cloud wireless access technology and various intelligent optimization algorithms, including k-clustering algorithm, particle swarm optimization algorithm, and whale optimization algorithm, forming a hybrid optimization algorithm. In order to comprehensively evaluate the actual performance of the model, this study recruited 20 experts to provide detailed ratings on four core dimensions: cost-benefit ratio, reliability, robustness, and user satisfaction. The results showed that the model scored 95.1, 96.4, 95.6, and 96.2 in the four dimensions of cost-benefit ratio, reliability indicators, robustness, and user satisfaction, respectively. This series of significant data not only confirms the theoretical superiority of the model, but also demonstrates its strong potential and practical value in practical applications. In summary, this study provides a promising and innovative solution for the field of renewable energy supply.</description><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Cost benefit analysis</subject><subject>energy supply optimization</subject><subject>heterogeneous cloud radio access</subject><subject>Heuristic algorithms</subject><subject>K-clustering algorithm</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Optimization models</subject><subject>Particle swarm optimization</subject><subject>particle swarm optimization algorithm</subject><subject>Reliability</subject><subject>Renewable energy</subject><subject>Renewable energy sources</subject><subject>Renewable resources</subject><subject>Robustness (mathematics)</subject><subject>User satisfaction</subject><subject>Whale optimization algorithms</subject><subject>Wireless communication</subject><subject>WOA algorithm</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1LIzEUHRaFFfUX7D4EfG43k6-ZPNahWsEiWJd9DEnmTkmJzZjMIPXXb-oU8b7cr3POvXCK4leJ52WJ5Z9F0yw3mznBhM0pw1VFxI_igpRCziin4uxb_bO4TmmHc9R5xKuLwq1HP7jX0GqPnmEP79p4QMs9xO0BrQ4muhZtxr73B_TUZ6D70IMLe7QOLXh0qxO0KLcrGCCGbRYIY0KND2OL_rkIHlJCC2tzuirOO-0TXJ_yZfH3bvnSrGaPT_cPzeJxZkkth1mHpaS8BmsNw0YY3UrCiCk7Iqw2TDJRC4FlzUESEFADley467htsalrelk8TLpt0DvVR_eq40EF7dTnIMSt0nFw1oMykkkQtGJWUGY7rCtMhQQuKmul0Dhr3UxafQxvI6RB7cIY9_l9RbHgTDDCq4yiE8rGkFKE7utqidXRIjVZpI4WqZNFmfV7YjkA-MbgjFS0pP8BxUSNPw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Tian, Feng</creator><creator>Wang, Hongjiang</creator><creator>Jiang, He</creator><creator>Zhao, Baida</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0000-8303-5812</orcidid></search><sort><creationdate>2024</creationdate><title>Multimodal Renewable Energy Hybrid Supply Optimization Model Based on Heterogeneous Cloud Wireless Access</title><author>Tian, Feng ; Wang, Hongjiang ; Jiang, He ; Zhao, Baida</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-f099358eccb40b6bad9242b1f26cab49468660985e92e6e8e394f26cf5cd0b883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Cost benefit analysis</topic><topic>energy supply optimization</topic><topic>heterogeneous cloud radio access</topic><topic>Heuristic algorithms</topic><topic>K-clustering algorithm</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Optimization models</topic><topic>Particle swarm optimization</topic><topic>particle swarm optimization algorithm</topic><topic>Reliability</topic><topic>Renewable energy</topic><topic>Renewable energy sources</topic><topic>Renewable resources</topic><topic>Robustness (mathematics)</topic><topic>User satisfaction</topic><topic>Whale optimization algorithms</topic><topic>Wireless communication</topic><topic>WOA algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Feng</creatorcontrib><creatorcontrib>Wang, Hongjiang</creatorcontrib><creatorcontrib>Jiang, He</creatorcontrib><creatorcontrib>Zhao, Baida</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Feng</au><au>Wang, Hongjiang</au><au>Jiang, He</au><au>Zhao, Baida</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimodal Renewable Energy Hybrid Supply Optimization Model Based on Heterogeneous Cloud Wireless Access</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>78286</spage><epage>78303</epage><pages>78286-78303</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>With the increasing emphasis on environmental issues, the utilization of renewable energy has been recognized as a feasible solution to address the energy crisis and reduce environmental pollution. In view of this, this article proposes a multi-modal renewable energy hybrid power supply optimization model based on heterogeneous cloud wireless access. The model innovatively combines heterogeneous cloud wireless access technology and various intelligent optimization algorithms, including k-clustering algorithm, particle swarm optimization algorithm, and whale optimization algorithm, forming a hybrid optimization algorithm. In order to comprehensively evaluate the actual performance of the model, this study recruited 20 experts to provide detailed ratings on four core dimensions: cost-benefit ratio, reliability, robustness, and user satisfaction. The results showed that the model scored 95.1, 96.4, 95.6, and 96.2 in the four dimensions of cost-benefit ratio, reliability indicators, robustness, and user satisfaction, respectively. This series of significant data not only confirms the theoretical superiority of the model, but also demonstrates its strong potential and practical value in practical applications. In summary, this study provides a promising and innovative solution for the field of renewable energy supply.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3407726</doi><tpages>18</tpages><orcidid>https://orcid.org/0009-0000-8303-5812</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.78286-78303
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_3065464257
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Cloud computing
Clustering
Clustering algorithms
Cost benefit analysis
energy supply optimization
heterogeneous cloud radio access
Heuristic algorithms
K-clustering algorithm
Optimization
Optimization algorithms
Optimization models
Particle swarm optimization
particle swarm optimization algorithm
Reliability
Renewable energy
Renewable energy sources
Renewable resources
Robustness (mathematics)
User satisfaction
Whale optimization algorithms
Wireless communication
WOA algorithm
title Multimodal Renewable Energy Hybrid Supply Optimization Model Based on Heterogeneous Cloud Wireless Access
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A19%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimodal%20Renewable%20Energy%20Hybrid%20Supply%20Optimization%20Model%20Based%20on%20Heterogeneous%20Cloud%20Wireless%20Access&rft.jtitle=IEEE%20access&rft.au=Tian,%20Feng&rft.date=2024&rft.volume=12&rft.spage=78286&rft.epage=78303&rft.pages=78286-78303&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3407726&rft_dat=%3Cproquest_cross%3E3065464257%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3065464257&rft_id=info:pmid/&rft_ieee_id=10542731&rft_doaj_id=oai_doaj_org_article_b949e6374c634cf0a70369e567cc96a0&rfr_iscdi=true