Yolo-global: a real-time target detector for mineral particles

Recently, deep learning methodologies have achieved significant advancements in mineral automatic sorting and anomaly detection. However, the limited features of minerals transported in the form of small particles pose significant challenges to accurate detection. To address this challenge, we propo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of real-time image processing 2024-05, Vol.21 (3), p.85, Article 85
Hauptverfasser: Wang, Zihao, Zhou, Dong, Guo, Chengjun, Zhou, Ruihao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 85
container_title Journal of real-time image processing
container_volume 21
creator Wang, Zihao
Zhou, Dong
Guo, Chengjun
Zhou, Ruihao
description Recently, deep learning methodologies have achieved significant advancements in mineral automatic sorting and anomaly detection. However, the limited features of minerals transported in the form of small particles pose significant challenges to accurate detection. To address this challenge, we propose a enhanced mineral particle detection algorithm based on the YOLOv8s model. Initially, a C2f-SRU block is introduced to enable the feature extraction network to more effectively process spatial redundant information. Additionally, we designed the GFF module with the aim of enhancing information propagation between non-adjacent scale features, thereby enabling deep networks to more fully leverage spatial positional information from shallower networks. Finally, we adopted the Wise-IoU loss function to optimize the detection performance of the model. We also re-designed the position of the prediction heads to achieve precise detection of small-scale targets. The experimental results substantiate the effectiveness of the algorithm, with YOLO-Global achieving a mAP@.5 of 95.8%. In comparison to the original YOLOv8s, the improved model exhibits a 2.5% increase in mAP, achieving a model inference speed of 81 fps, meeting the requirements for real-time processing and accuracy.
doi_str_mv 10.1007/s11554-024-01468-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3065127126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3065127126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-6ffa73ec714686de70c69b31bb5424089ebdc34ab295ec81d0f4d2620b6dc79f3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKt_wNWA62jemXEhSPEFBTe6cBWSzJ0yZdrUJF3035s6oru6ONy7-M65l4PQJSXXlBB9kyiVUmDCiqhQNd4doQmtFcU1o83x707IKTpLaUmI0orLCbr7CEPAiyE4O9xWtopgB5z7FVTZxgXkqoUMPodYdUWrfg3RDtXGxtz7AdI5OunskODiZ07R--PD2-wZz1-fXmb3c-y5lhmrrrOag9f731QLmnjVOE6dk4IJUjfgWs-FdayR4Gvakk60TDHiVOt10_EpuhpzNzF8biFlswzbuC4nDSdKUqYpU4cpWfJUI5r_KM6ZoLxQbKR8DClF6Mwm9isbd4YSs-_cjJ2b0rn57tzsiomPplTg9QLiX_QB1xfNZ4J7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3052332413</pqid></control><display><type>article</type><title>Yolo-global: a real-time target detector for mineral particles</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Zihao ; Zhou, Dong ; Guo, Chengjun ; Zhou, Ruihao</creator><creatorcontrib>Wang, Zihao ; Zhou, Dong ; Guo, Chengjun ; Zhou, Ruihao</creatorcontrib><description>Recently, deep learning methodologies have achieved significant advancements in mineral automatic sorting and anomaly detection. However, the limited features of minerals transported in the form of small particles pose significant challenges to accurate detection. To address this challenge, we propose a enhanced mineral particle detection algorithm based on the YOLOv8s model. Initially, a C2f-SRU block is introduced to enable the feature extraction network to more effectively process spatial redundant information. Additionally, we designed the GFF module with the aim of enhancing information propagation between non-adjacent scale features, thereby enabling deep networks to more fully leverage spatial positional information from shallower networks. Finally, we adopted the Wise-IoU loss function to optimize the detection performance of the model. We also re-designed the position of the prediction heads to achieve precise detection of small-scale targets. The experimental results substantiate the effectiveness of the algorithm, with YOLO-Global achieving a mAP@.5 of 95.8%. In comparison to the original YOLOv8s, the improved model exhibits a 2.5% increase in mAP, achieving a model inference speed of 81 fps, meeting the requirements for real-time processing and accuracy.</description><identifier>ISSN: 1861-8200</identifier><identifier>EISSN: 1861-8219</identifier><identifier>DOI: 10.1007/s11554-024-01468-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Agricultural production ; Algorithms ; Anomalies ; Computer Graphics ; Computer Science ; Datasets ; Efficiency ; Feature extraction ; Image Processing and Computer Vision ; Machine learning ; Multimedia Information Systems ; Pattern Recognition ; Real time ; Semantics ; Sensors ; Signal,Image and Speech Processing ; Target detection</subject><ispartof>Journal of real-time image processing, 2024-05, Vol.21 (3), p.85, Article 85</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-6ffa73ec714686de70c69b31bb5424089ebdc34ab295ec81d0f4d2620b6dc79f3</citedby><cites>FETCH-LOGICAL-c375t-6ffa73ec714686de70c69b31bb5424089ebdc34ab295ec81d0f4d2620b6dc79f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11554-024-01468-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11554-024-01468-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wang, Zihao</creatorcontrib><creatorcontrib>Zhou, Dong</creatorcontrib><creatorcontrib>Guo, Chengjun</creatorcontrib><creatorcontrib>Zhou, Ruihao</creatorcontrib><title>Yolo-global: a real-time target detector for mineral particles</title><title>Journal of real-time image processing</title><addtitle>J Real-Time Image Proc</addtitle><description>Recently, deep learning methodologies have achieved significant advancements in mineral automatic sorting and anomaly detection. However, the limited features of minerals transported in the form of small particles pose significant challenges to accurate detection. To address this challenge, we propose a enhanced mineral particle detection algorithm based on the YOLOv8s model. Initially, a C2f-SRU block is introduced to enable the feature extraction network to more effectively process spatial redundant information. Additionally, we designed the GFF module with the aim of enhancing information propagation between non-adjacent scale features, thereby enabling deep networks to more fully leverage spatial positional information from shallower networks. Finally, we adopted the Wise-IoU loss function to optimize the detection performance of the model. We also re-designed the position of the prediction heads to achieve precise detection of small-scale targets. The experimental results substantiate the effectiveness of the algorithm, with YOLO-Global achieving a mAP@.5 of 95.8%. In comparison to the original YOLOv8s, the improved model exhibits a 2.5% increase in mAP, achieving a model inference speed of 81 fps, meeting the requirements for real-time processing and accuracy.</description><subject>Accuracy</subject><subject>Agricultural production</subject><subject>Algorithms</subject><subject>Anomalies</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Datasets</subject><subject>Efficiency</subject><subject>Feature extraction</subject><subject>Image Processing and Computer Vision</subject><subject>Machine learning</subject><subject>Multimedia Information Systems</subject><subject>Pattern Recognition</subject><subject>Real time</subject><subject>Semantics</subject><subject>Sensors</subject><subject>Signal,Image and Speech Processing</subject><subject>Target detection</subject><issn>1861-8200</issn><issn>1861-8219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKt_wNWA62jemXEhSPEFBTe6cBWSzJ0yZdrUJF3035s6oru6ONy7-M65l4PQJSXXlBB9kyiVUmDCiqhQNd4doQmtFcU1o83x707IKTpLaUmI0orLCbr7CEPAiyE4O9xWtopgB5z7FVTZxgXkqoUMPodYdUWrfg3RDtXGxtz7AdI5OunskODiZ07R--PD2-wZz1-fXmb3c-y5lhmrrrOag9f731QLmnjVOE6dk4IJUjfgWs-FdayR4Gvakk60TDHiVOt10_EpuhpzNzF8biFlswzbuC4nDSdKUqYpU4cpWfJUI5r_KM6ZoLxQbKR8DClF6Mwm9isbd4YSs-_cjJ2b0rn57tzsiomPplTg9QLiX_QB1xfNZ4J7</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Wang, Zihao</creator><creator>Zhou, Dong</creator><creator>Guo, Chengjun</creator><creator>Zhou, Ruihao</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20240501</creationdate><title>Yolo-global: a real-time target detector for mineral particles</title><author>Wang, Zihao ; Zhou, Dong ; Guo, Chengjun ; Zhou, Ruihao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-6ffa73ec714686de70c69b31bb5424089ebdc34ab295ec81d0f4d2620b6dc79f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Agricultural production</topic><topic>Algorithms</topic><topic>Anomalies</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Datasets</topic><topic>Efficiency</topic><topic>Feature extraction</topic><topic>Image Processing and Computer Vision</topic><topic>Machine learning</topic><topic>Multimedia Information Systems</topic><topic>Pattern Recognition</topic><topic>Real time</topic><topic>Semantics</topic><topic>Sensors</topic><topic>Signal,Image and Speech Processing</topic><topic>Target detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zihao</creatorcontrib><creatorcontrib>Zhou, Dong</creatorcontrib><creatorcontrib>Guo, Chengjun</creatorcontrib><creatorcontrib>Zhou, Ruihao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of real-time image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zihao</au><au>Zhou, Dong</au><au>Guo, Chengjun</au><au>Zhou, Ruihao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Yolo-global: a real-time target detector for mineral particles</atitle><jtitle>Journal of real-time image processing</jtitle><stitle>J Real-Time Image Proc</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>21</volume><issue>3</issue><spage>85</spage><pages>85-</pages><artnum>85</artnum><issn>1861-8200</issn><eissn>1861-8219</eissn><abstract>Recently, deep learning methodologies have achieved significant advancements in mineral automatic sorting and anomaly detection. However, the limited features of minerals transported in the form of small particles pose significant challenges to accurate detection. To address this challenge, we propose a enhanced mineral particle detection algorithm based on the YOLOv8s model. Initially, a C2f-SRU block is introduced to enable the feature extraction network to more effectively process spatial redundant information. Additionally, we designed the GFF module with the aim of enhancing information propagation between non-adjacent scale features, thereby enabling deep networks to more fully leverage spatial positional information from shallower networks. Finally, we adopted the Wise-IoU loss function to optimize the detection performance of the model. We also re-designed the position of the prediction heads to achieve precise detection of small-scale targets. The experimental results substantiate the effectiveness of the algorithm, with YOLO-Global achieving a mAP@.5 of 95.8%. In comparison to the original YOLOv8s, the improved model exhibits a 2.5% increase in mAP, achieving a model inference speed of 81 fps, meeting the requirements for real-time processing and accuracy.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11554-024-01468-y</doi></addata></record>
fulltext fulltext
identifier ISSN: 1861-8200
ispartof Journal of real-time image processing, 2024-05, Vol.21 (3), p.85, Article 85
issn 1861-8200
1861-8219
language eng
recordid cdi_proquest_journals_3065127126
source SpringerLink Journals - AutoHoldings
subjects Accuracy
Agricultural production
Algorithms
Anomalies
Computer Graphics
Computer Science
Datasets
Efficiency
Feature extraction
Image Processing and Computer Vision
Machine learning
Multimedia Information Systems
Pattern Recognition
Real time
Semantics
Sensors
Signal,Image and Speech Processing
Target detection
title Yolo-global: a real-time target detector for mineral particles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A17%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Yolo-global:%20a%20real-time%20target%20detector%20for%20mineral%20particles&rft.jtitle=Journal%20of%20real-time%20image%20processing&rft.au=Wang,%20Zihao&rft.date=2024-05-01&rft.volume=21&rft.issue=3&rft.spage=85&rft.pages=85-&rft.artnum=85&rft.issn=1861-8200&rft.eissn=1861-8219&rft_id=info:doi/10.1007/s11554-024-01468-y&rft_dat=%3Cproquest_cross%3E3065127126%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3052332413&rft_id=info:pmid/&rfr_iscdi=true