Yolo-global: a real-time target detector for mineral particles
Recently, deep learning methodologies have achieved significant advancements in mineral automatic sorting and anomaly detection. However, the limited features of minerals transported in the form of small particles pose significant challenges to accurate detection. To address this challenge, we propo...
Gespeichert in:
Veröffentlicht in: | Journal of real-time image processing 2024-05, Vol.21 (3), p.85, Article 85 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 85 |
container_title | Journal of real-time image processing |
container_volume | 21 |
creator | Wang, Zihao Zhou, Dong Guo, Chengjun Zhou, Ruihao |
description | Recently, deep learning methodologies have achieved significant advancements in mineral automatic sorting and anomaly detection. However, the limited features of minerals transported in the form of small particles pose significant challenges to accurate detection. To address this challenge, we propose a enhanced mineral particle detection algorithm based on the YOLOv8s model. Initially, a C2f-SRU block is introduced to enable the feature extraction network to more effectively process spatial redundant information. Additionally, we designed the GFF module with the aim of enhancing information propagation between non-adjacent scale features, thereby enabling deep networks to more fully leverage spatial positional information from shallower networks. Finally, we adopted the Wise-IoU loss function to optimize the detection performance of the model. We also re-designed the position of the prediction heads to achieve precise detection of small-scale targets. The experimental results substantiate the effectiveness of the algorithm, with YOLO-Global achieving a mAP@.5 of 95.8%. In comparison to the original YOLOv8s, the improved model exhibits a 2.5% increase in mAP, achieving a model inference speed of 81 fps, meeting the requirements for real-time processing and accuracy. |
doi_str_mv | 10.1007/s11554-024-01468-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3065127126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3065127126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-6ffa73ec714686de70c69b31bb5424089ebdc34ab295ec81d0f4d2620b6dc79f3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKt_wNWA62jemXEhSPEFBTe6cBWSzJ0yZdrUJF3035s6oru6ONy7-M65l4PQJSXXlBB9kyiVUmDCiqhQNd4doQmtFcU1o83x707IKTpLaUmI0orLCbr7CEPAiyE4O9xWtopgB5z7FVTZxgXkqoUMPodYdUWrfg3RDtXGxtz7AdI5OunskODiZ07R--PD2-wZz1-fXmb3c-y5lhmrrrOag9f731QLmnjVOE6dk4IJUjfgWs-FdayR4Gvakk60TDHiVOt10_EpuhpzNzF8biFlswzbuC4nDSdKUqYpU4cpWfJUI5r_KM6ZoLxQbKR8DClF6Mwm9isbd4YSs-_cjJ2b0rn57tzsiomPplTg9QLiX_QB1xfNZ4J7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3052332413</pqid></control><display><type>article</type><title>Yolo-global: a real-time target detector for mineral particles</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Zihao ; Zhou, Dong ; Guo, Chengjun ; Zhou, Ruihao</creator><creatorcontrib>Wang, Zihao ; Zhou, Dong ; Guo, Chengjun ; Zhou, Ruihao</creatorcontrib><description>Recently, deep learning methodologies have achieved significant advancements in mineral automatic sorting and anomaly detection. However, the limited features of minerals transported in the form of small particles pose significant challenges to accurate detection. To address this challenge, we propose a enhanced mineral particle detection algorithm based on the YOLOv8s model. Initially, a C2f-SRU block is introduced to enable the feature extraction network to more effectively process spatial redundant information. Additionally, we designed the GFF module with the aim of enhancing information propagation between non-adjacent scale features, thereby enabling deep networks to more fully leverage spatial positional information from shallower networks. Finally, we adopted the Wise-IoU loss function to optimize the detection performance of the model. We also re-designed the position of the prediction heads to achieve precise detection of small-scale targets. The experimental results substantiate the effectiveness of the algorithm, with YOLO-Global achieving a mAP@.5 of 95.8%. In comparison to the original YOLOv8s, the improved model exhibits a 2.5% increase in mAP, achieving a model inference speed of 81 fps, meeting the requirements for real-time processing and accuracy.</description><identifier>ISSN: 1861-8200</identifier><identifier>EISSN: 1861-8219</identifier><identifier>DOI: 10.1007/s11554-024-01468-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Agricultural production ; Algorithms ; Anomalies ; Computer Graphics ; Computer Science ; Datasets ; Efficiency ; Feature extraction ; Image Processing and Computer Vision ; Machine learning ; Multimedia Information Systems ; Pattern Recognition ; Real time ; Semantics ; Sensors ; Signal,Image and Speech Processing ; Target detection</subject><ispartof>Journal of real-time image processing, 2024-05, Vol.21 (3), p.85, Article 85</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-6ffa73ec714686de70c69b31bb5424089ebdc34ab295ec81d0f4d2620b6dc79f3</citedby><cites>FETCH-LOGICAL-c375t-6ffa73ec714686de70c69b31bb5424089ebdc34ab295ec81d0f4d2620b6dc79f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11554-024-01468-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11554-024-01468-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wang, Zihao</creatorcontrib><creatorcontrib>Zhou, Dong</creatorcontrib><creatorcontrib>Guo, Chengjun</creatorcontrib><creatorcontrib>Zhou, Ruihao</creatorcontrib><title>Yolo-global: a real-time target detector for mineral particles</title><title>Journal of real-time image processing</title><addtitle>J Real-Time Image Proc</addtitle><description>Recently, deep learning methodologies have achieved significant advancements in mineral automatic sorting and anomaly detection. However, the limited features of minerals transported in the form of small particles pose significant challenges to accurate detection. To address this challenge, we propose a enhanced mineral particle detection algorithm based on the YOLOv8s model. Initially, a C2f-SRU block is introduced to enable the feature extraction network to more effectively process spatial redundant information. Additionally, we designed the GFF module with the aim of enhancing information propagation between non-adjacent scale features, thereby enabling deep networks to more fully leverage spatial positional information from shallower networks. Finally, we adopted the Wise-IoU loss function to optimize the detection performance of the model. We also re-designed the position of the prediction heads to achieve precise detection of small-scale targets. The experimental results substantiate the effectiveness of the algorithm, with YOLO-Global achieving a mAP@.5 of 95.8%. In comparison to the original YOLOv8s, the improved model exhibits a 2.5% increase in mAP, achieving a model inference speed of 81 fps, meeting the requirements for real-time processing and accuracy.</description><subject>Accuracy</subject><subject>Agricultural production</subject><subject>Algorithms</subject><subject>Anomalies</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Datasets</subject><subject>Efficiency</subject><subject>Feature extraction</subject><subject>Image Processing and Computer Vision</subject><subject>Machine learning</subject><subject>Multimedia Information Systems</subject><subject>Pattern Recognition</subject><subject>Real time</subject><subject>Semantics</subject><subject>Sensors</subject><subject>Signal,Image and Speech Processing</subject><subject>Target detection</subject><issn>1861-8200</issn><issn>1861-8219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKt_wNWA62jemXEhSPEFBTe6cBWSzJ0yZdrUJF3035s6oru6ONy7-M65l4PQJSXXlBB9kyiVUmDCiqhQNd4doQmtFcU1o83x707IKTpLaUmI0orLCbr7CEPAiyE4O9xWtopgB5z7FVTZxgXkqoUMPodYdUWrfg3RDtXGxtz7AdI5OunskODiZ07R--PD2-wZz1-fXmb3c-y5lhmrrrOag9f731QLmnjVOE6dk4IJUjfgWs-FdayR4Gvakk60TDHiVOt10_EpuhpzNzF8biFlswzbuC4nDSdKUqYpU4cpWfJUI5r_KM6ZoLxQbKR8DClF6Mwm9isbd4YSs-_cjJ2b0rn57tzsiomPplTg9QLiX_QB1xfNZ4J7</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Wang, Zihao</creator><creator>Zhou, Dong</creator><creator>Guo, Chengjun</creator><creator>Zhou, Ruihao</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20240501</creationdate><title>Yolo-global: a real-time target detector for mineral particles</title><author>Wang, Zihao ; Zhou, Dong ; Guo, Chengjun ; Zhou, Ruihao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-6ffa73ec714686de70c69b31bb5424089ebdc34ab295ec81d0f4d2620b6dc79f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Agricultural production</topic><topic>Algorithms</topic><topic>Anomalies</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Datasets</topic><topic>Efficiency</topic><topic>Feature extraction</topic><topic>Image Processing and Computer Vision</topic><topic>Machine learning</topic><topic>Multimedia Information Systems</topic><topic>Pattern Recognition</topic><topic>Real time</topic><topic>Semantics</topic><topic>Sensors</topic><topic>Signal,Image and Speech Processing</topic><topic>Target detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zihao</creatorcontrib><creatorcontrib>Zhou, Dong</creatorcontrib><creatorcontrib>Guo, Chengjun</creatorcontrib><creatorcontrib>Zhou, Ruihao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of real-time image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zihao</au><au>Zhou, Dong</au><au>Guo, Chengjun</au><au>Zhou, Ruihao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Yolo-global: a real-time target detector for mineral particles</atitle><jtitle>Journal of real-time image processing</jtitle><stitle>J Real-Time Image Proc</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>21</volume><issue>3</issue><spage>85</spage><pages>85-</pages><artnum>85</artnum><issn>1861-8200</issn><eissn>1861-8219</eissn><abstract>Recently, deep learning methodologies have achieved significant advancements in mineral automatic sorting and anomaly detection. However, the limited features of minerals transported in the form of small particles pose significant challenges to accurate detection. To address this challenge, we propose a enhanced mineral particle detection algorithm based on the YOLOv8s model. Initially, a C2f-SRU block is introduced to enable the feature extraction network to more effectively process spatial redundant information. Additionally, we designed the GFF module with the aim of enhancing information propagation between non-adjacent scale features, thereby enabling deep networks to more fully leverage spatial positional information from shallower networks. Finally, we adopted the Wise-IoU loss function to optimize the detection performance of the model. We also re-designed the position of the prediction heads to achieve precise detection of small-scale targets. The experimental results substantiate the effectiveness of the algorithm, with YOLO-Global achieving a mAP@.5 of 95.8%. In comparison to the original YOLOv8s, the improved model exhibits a 2.5% increase in mAP, achieving a model inference speed of 81 fps, meeting the requirements for real-time processing and accuracy.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11554-024-01468-y</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1861-8200 |
ispartof | Journal of real-time image processing, 2024-05, Vol.21 (3), p.85, Article 85 |
issn | 1861-8200 1861-8219 |
language | eng |
recordid | cdi_proquest_journals_3065127126 |
source | SpringerLink Journals - AutoHoldings |
subjects | Accuracy Agricultural production Algorithms Anomalies Computer Graphics Computer Science Datasets Efficiency Feature extraction Image Processing and Computer Vision Machine learning Multimedia Information Systems Pattern Recognition Real time Semantics Sensors Signal,Image and Speech Processing Target detection |
title | Yolo-global: a real-time target detector for mineral particles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A17%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Yolo-global:%20a%20real-time%20target%20detector%20for%20mineral%20particles&rft.jtitle=Journal%20of%20real-time%20image%20processing&rft.au=Wang,%20Zihao&rft.date=2024-05-01&rft.volume=21&rft.issue=3&rft.spage=85&rft.pages=85-&rft.artnum=85&rft.issn=1861-8200&rft.eissn=1861-8219&rft_id=info:doi/10.1007/s11554-024-01468-y&rft_dat=%3Cproquest_cross%3E3065127126%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3052332413&rft_id=info:pmid/&rfr_iscdi=true |