Unveiling the Potential of AI for Nanomaterial Morphology Prediction
Creation of nanomaterials with specific morphology remains a complex experimental process, even though there is a growing demand for these materials in various industry sectors. This study explores the potential of AI to predict the morphology of nanoparticles within the data availability constraint...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-05 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Dubrovsky, Ivan Dmitrenko, Andrei Dmitrenko, Aleksei Serov, Nikita Vinogradov, Vladimir |
description | Creation of nanomaterials with specific morphology remains a complex experimental process, even though there is a growing demand for these materials in various industry sectors. This study explores the potential of AI to predict the morphology of nanoparticles within the data availability constraints. For that, we first generated a new multi-modal dataset that is double the size of analogous studies. Then, we systematically evaluated performance of classical machine learning and large language models in prediction of nanomaterial shapes and sizes. Finally, we prototyped a text-to-image system, discussed the obtained empirical results, as well as the limitations and promises of existing approaches. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3065123432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3065123432</sourcerecordid><originalsourceid>FETCH-proquest_journals_30651234323</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3CLgupHltdSt-0IXSha5L0Nc2JebVJBW8vQoewNXAzIxYJAHSZJlJOWGx950QQhYLmecQsc3FPlEbbRseWuQlBbRBK8Op5qsDr8nxk7J0VwHdVx_J9S0Zal68dHjT16DJzti4VsZj_OOUzXfb83qf9I4eA_pQdTQ4-0kViCJPJWQg4b_rDSluOmc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3065123432</pqid></control><display><type>article</type><title>Unveiling the Potential of AI for Nanomaterial Morphology Prediction</title><source>Free E- Journals</source><creator>Dubrovsky, Ivan ; Dmitrenko, Andrei ; Dmitrenko, Aleksei ; Serov, Nikita ; Vinogradov, Vladimir</creator><creatorcontrib>Dubrovsky, Ivan ; Dmitrenko, Andrei ; Dmitrenko, Aleksei ; Serov, Nikita ; Vinogradov, Vladimir</creatorcontrib><description>Creation of nanomaterials with specific morphology remains a complex experimental process, even though there is a growing demand for these materials in various industry sectors. This study explores the potential of AI to predict the morphology of nanoparticles within the data availability constraints. For that, we first generated a new multi-modal dataset that is double the size of analogous studies. Then, we systematically evaluated performance of classical machine learning and large language models in prediction of nanomaterial shapes and sizes. Finally, we prototyped a text-to-image system, discussed the obtained empirical results, as well as the limitations and promises of existing approaches.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial intelligence ; Large language models ; Machine learning ; Morphology ; Nanomaterials</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Dubrovsky, Ivan</creatorcontrib><creatorcontrib>Dmitrenko, Andrei</creatorcontrib><creatorcontrib>Dmitrenko, Aleksei</creatorcontrib><creatorcontrib>Serov, Nikita</creatorcontrib><creatorcontrib>Vinogradov, Vladimir</creatorcontrib><title>Unveiling the Potential of AI for Nanomaterial Morphology Prediction</title><title>arXiv.org</title><description>Creation of nanomaterials with specific morphology remains a complex experimental process, even though there is a growing demand for these materials in various industry sectors. This study explores the potential of AI to predict the morphology of nanoparticles within the data availability constraints. For that, we first generated a new multi-modal dataset that is double the size of analogous studies. Then, we systematically evaluated performance of classical machine learning and large language models in prediction of nanomaterial shapes and sizes. Finally, we prototyped a text-to-image system, discussed the obtained empirical results, as well as the limitations and promises of existing approaches.</description><subject>Artificial intelligence</subject><subject>Large language models</subject><subject>Machine learning</subject><subject>Morphology</subject><subject>Nanomaterials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNiksKwjAUAIMgWLR3CLgupHltdSt-0IXSha5L0Nc2JebVJBW8vQoewNXAzIxYJAHSZJlJOWGx950QQhYLmecQsc3FPlEbbRseWuQlBbRBK8Op5qsDr8nxk7J0VwHdVx_J9S0Zal68dHjT16DJzti4VsZj_OOUzXfb83qf9I4eA_pQdTQ4-0kViCJPJWQg4b_rDSluOmc</recordid><startdate>20240531</startdate><enddate>20240531</enddate><creator>Dubrovsky, Ivan</creator><creator>Dmitrenko, Andrei</creator><creator>Dmitrenko, Aleksei</creator><creator>Serov, Nikita</creator><creator>Vinogradov, Vladimir</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240531</creationdate><title>Unveiling the Potential of AI for Nanomaterial Morphology Prediction</title><author>Dubrovsky, Ivan ; Dmitrenko, Andrei ; Dmitrenko, Aleksei ; Serov, Nikita ; Vinogradov, Vladimir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30651234323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Large language models</topic><topic>Machine learning</topic><topic>Morphology</topic><topic>Nanomaterials</topic><toplevel>online_resources</toplevel><creatorcontrib>Dubrovsky, Ivan</creatorcontrib><creatorcontrib>Dmitrenko, Andrei</creatorcontrib><creatorcontrib>Dmitrenko, Aleksei</creatorcontrib><creatorcontrib>Serov, Nikita</creatorcontrib><creatorcontrib>Vinogradov, Vladimir</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dubrovsky, Ivan</au><au>Dmitrenko, Andrei</au><au>Dmitrenko, Aleksei</au><au>Serov, Nikita</au><au>Vinogradov, Vladimir</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Unveiling the Potential of AI for Nanomaterial Morphology Prediction</atitle><jtitle>arXiv.org</jtitle><date>2024-05-31</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Creation of nanomaterials with specific morphology remains a complex experimental process, even though there is a growing demand for these materials in various industry sectors. This study explores the potential of AI to predict the morphology of nanoparticles within the data availability constraints. For that, we first generated a new multi-modal dataset that is double the size of analogous studies. Then, we systematically evaluated performance of classical machine learning and large language models in prediction of nanomaterial shapes and sizes. Finally, we prototyped a text-to-image system, discussed the obtained empirical results, as well as the limitations and promises of existing approaches.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3065123432 |
source | Free E- Journals |
subjects | Artificial intelligence Large language models Machine learning Morphology Nanomaterials |
title | Unveiling the Potential of AI for Nanomaterial Morphology Prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T10%3A15%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Unveiling%20the%20Potential%20of%20AI%20for%20Nanomaterial%20Morphology%20Prediction&rft.jtitle=arXiv.org&rft.au=Dubrovsky,%20Ivan&rft.date=2024-05-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3065123432%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3065123432&rft_id=info:pmid/&rfr_iscdi=true |