Kinetic Inductance Traveling Wave Amplifier Designs for Practical Microwave Readout Applications
A Kinetic Inductance Traveling Wave Amplifier (KIT) utilizes the nonlinear kinetic inductance of superconducting films, particularly niobium titanium nitride (NbTiN), for parametric amplification. These amplifiers achieve remarkable performance in terms of gain, bandwidth, and compression power and...
Gespeichert in:
Veröffentlicht in: | Journal of low temperature physics 2024-05, Vol.215 (3-4), p.152-160 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 160 |
---|---|
container_issue | 3-4 |
container_start_page | 152 |
container_title | Journal of low temperature physics |
container_volume | 215 |
creator | Giachero, A. Vissers, M. Wheeler, J. Howe, L. Gao, J. Austermann, J. Hubmayr, J. Nucciotti, A. Ullom, J. |
description | A Kinetic Inductance Traveling Wave Amplifier (KIT) utilizes the nonlinear kinetic inductance of superconducting films, particularly niobium titanium nitride (NbTiN), for parametric amplification. These amplifiers achieve remarkable performance in terms of gain, bandwidth, and compression power and frequently approach the quantum limit for noise. However, most KIT demonstrations have been isolated from practical device readout systems. Using a KIT as the first amplifier in the readout chain of an unoptimized microwave SQUID multiplexer coupled to a transition-edge sensor microcalorimeter, we see an initial improvement in the flux noise [
1
]. One challenge in KIT integration is the considerable microwave pump power required to drive the non-linearity. To address this, we have initiated efforts to reduce the pump power by using thinner NbTiN films and an inverted microstrip transmission line design. In this article, we present the new transmission line design, fabrication procedure, and initial device characterization—including gain and added noise. These devices exhibit over 10 dB of gain with a 3 dB bandwidth of approximately 5.5–7.25 GHz, a maximum practical gain of 12 dB, and typical gain ripple under 4 dB peak to peak. We observe an appreciable impedance mismatch in the NbTiN transmission line, which is likely the source of the majority of the gain ripple. Finally, we perform an initial noise characterization and demonstrate system-added noise of three quanta or less over nearly the entire 3 dB bandwidth. |
doi_str_mv | 10.1007/s10909-024-03078-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3064985764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064985764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-d6f71db793ee4f0c0801e1153c628bd789c9264061dfaf38a169ddfa6f2f5f7c3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssQ6M7cSOl1V5VYBAqIilcR27cpUmwU5A_D0uQWLHamZxz53RQeiUwDkBEBeRgASZAc0zYCDKjOyhCSkEywQrxD6aAFCaUSrJITqKcQMAsuRsgt7ufGN7b_CiqQbT68ZYvAz6w9a-WePXtODZtqu98zbgSxv9uonYtQE_BW0Sp2v84E1oP3fJZ6urdujxrEuE0b1vm3iMDpyuoz35nVP0cn21nN9m9483i_nsPjOM5H1WcSdItRKSWZs7MFACsYQUzHBaripRSiMpz4GTymnHSk24rNLKHXWFE4ZN0dnY24X2fbCxV5t2CE06qRjwXJaF4HlK0TGVXo4xWKe64Lc6fCkCamdSjSZVMql-TCqSIDZCMYWbtQ1_1f9Q3_FAd10</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064985764</pqid></control><display><type>article</type><title>Kinetic Inductance Traveling Wave Amplifier Designs for Practical Microwave Readout Applications</title><source>SpringerLink Journals</source><creator>Giachero, A. ; Vissers, M. ; Wheeler, J. ; Howe, L. ; Gao, J. ; Austermann, J. ; Hubmayr, J. ; Nucciotti, A. ; Ullom, J.</creator><creatorcontrib>Giachero, A. ; Vissers, M. ; Wheeler, J. ; Howe, L. ; Gao, J. ; Austermann, J. ; Hubmayr, J. ; Nucciotti, A. ; Ullom, J.</creatorcontrib><description>A Kinetic Inductance Traveling Wave Amplifier (KIT) utilizes the nonlinear kinetic inductance of superconducting films, particularly niobium titanium nitride (NbTiN), for parametric amplification. These amplifiers achieve remarkable performance in terms of gain, bandwidth, and compression power and frequently approach the quantum limit for noise. However, most KIT demonstrations have been isolated from practical device readout systems. Using a KIT as the first amplifier in the readout chain of an unoptimized microwave SQUID multiplexer coupled to a transition-edge sensor microcalorimeter, we see an initial improvement in the flux noise [
1
]. One challenge in KIT integration is the considerable microwave pump power required to drive the non-linearity. To address this, we have initiated efforts to reduce the pump power by using thinner NbTiN films and an inverted microstrip transmission line design. In this article, we present the new transmission line design, fabrication procedure, and initial device characterization—including gain and added noise. These devices exhibit over 10 dB of gain with a 3 dB bandwidth of approximately 5.5–7.25 GHz, a maximum practical gain of 12 dB, and typical gain ripple under 4 dB peak to peak. We observe an appreciable impedance mismatch in the NbTiN transmission line, which is likely the source of the majority of the gain ripple. Finally, we perform an initial noise characterization and demonstrate system-added noise of three quanta or less over nearly the entire 3 dB bandwidth.</description><identifier>ISSN: 0022-2291</identifier><identifier>EISSN: 1573-7357</identifier><identifier>DOI: 10.1007/s10909-024-03078-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Amplification ; Bandwidths ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Inductance ; Magnetic Materials ; Magnetism ; Microstrip transmission lines ; Niobium ; Physics ; Physics and Astronomy ; Read out systems ; Ripples ; Superconducting films ; Superconducting quantum interference devices ; Titanium nitride ; Traveling wave amplifiers ; Traveling waves</subject><ispartof>Journal of low temperature physics, 2024-05, Vol.215 (3-4), p.152-160</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-d6f71db793ee4f0c0801e1153c628bd789c9264061dfaf38a169ddfa6f2f5f7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10909-024-03078-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10909-024-03078-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Giachero, A.</creatorcontrib><creatorcontrib>Vissers, M.</creatorcontrib><creatorcontrib>Wheeler, J.</creatorcontrib><creatorcontrib>Howe, L.</creatorcontrib><creatorcontrib>Gao, J.</creatorcontrib><creatorcontrib>Austermann, J.</creatorcontrib><creatorcontrib>Hubmayr, J.</creatorcontrib><creatorcontrib>Nucciotti, A.</creatorcontrib><creatorcontrib>Ullom, J.</creatorcontrib><title>Kinetic Inductance Traveling Wave Amplifier Designs for Practical Microwave Readout Applications</title><title>Journal of low temperature physics</title><addtitle>J Low Temp Phys</addtitle><description>A Kinetic Inductance Traveling Wave Amplifier (KIT) utilizes the nonlinear kinetic inductance of superconducting films, particularly niobium titanium nitride (NbTiN), for parametric amplification. These amplifiers achieve remarkable performance in terms of gain, bandwidth, and compression power and frequently approach the quantum limit for noise. However, most KIT demonstrations have been isolated from practical device readout systems. Using a KIT as the first amplifier in the readout chain of an unoptimized microwave SQUID multiplexer coupled to a transition-edge sensor microcalorimeter, we see an initial improvement in the flux noise [
1
]. One challenge in KIT integration is the considerable microwave pump power required to drive the non-linearity. To address this, we have initiated efforts to reduce the pump power by using thinner NbTiN films and an inverted microstrip transmission line design. In this article, we present the new transmission line design, fabrication procedure, and initial device characterization—including gain and added noise. These devices exhibit over 10 dB of gain with a 3 dB bandwidth of approximately 5.5–7.25 GHz, a maximum practical gain of 12 dB, and typical gain ripple under 4 dB peak to peak. We observe an appreciable impedance mismatch in the NbTiN transmission line, which is likely the source of the majority of the gain ripple. Finally, we perform an initial noise characterization and demonstrate system-added noise of three quanta or less over nearly the entire 3 dB bandwidth.</description><subject>Amplification</subject><subject>Bandwidths</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Inductance</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>Microstrip transmission lines</subject><subject>Niobium</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Read out systems</subject><subject>Ripples</subject><subject>Superconducting films</subject><subject>Superconducting quantum interference devices</subject><subject>Titanium nitride</subject><subject>Traveling wave amplifiers</subject><subject>Traveling waves</subject><issn>0022-2291</issn><issn>1573-7357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kMtOwzAQRS0EEqXwA6wssQ6M7cSOl1V5VYBAqIilcR27cpUmwU5A_D0uQWLHamZxz53RQeiUwDkBEBeRgASZAc0zYCDKjOyhCSkEywQrxD6aAFCaUSrJITqKcQMAsuRsgt7ufGN7b_CiqQbT68ZYvAz6w9a-WePXtODZtqu98zbgSxv9uonYtQE_BW0Sp2v84E1oP3fJZ6urdujxrEuE0b1vm3iMDpyuoz35nVP0cn21nN9m9483i_nsPjOM5H1WcSdItRKSWZs7MFACsYQUzHBaripRSiMpz4GTymnHSk24rNLKHXWFE4ZN0dnY24X2fbCxV5t2CE06qRjwXJaF4HlK0TGVXo4xWKe64Lc6fCkCamdSjSZVMql-TCqSIDZCMYWbtQ1_1f9Q3_FAd10</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Giachero, A.</creator><creator>Vissers, M.</creator><creator>Wheeler, J.</creator><creator>Howe, L.</creator><creator>Gao, J.</creator><creator>Austermann, J.</creator><creator>Hubmayr, J.</creator><creator>Nucciotti, A.</creator><creator>Ullom, J.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240501</creationdate><title>Kinetic Inductance Traveling Wave Amplifier Designs for Practical Microwave Readout Applications</title><author>Giachero, A. ; Vissers, M. ; Wheeler, J. ; Howe, L. ; Gao, J. ; Austermann, J. ; Hubmayr, J. ; Nucciotti, A. ; Ullom, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-d6f71db793ee4f0c0801e1153c628bd789c9264061dfaf38a169ddfa6f2f5f7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amplification</topic><topic>Bandwidths</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Inductance</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>Microstrip transmission lines</topic><topic>Niobium</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Read out systems</topic><topic>Ripples</topic><topic>Superconducting films</topic><topic>Superconducting quantum interference devices</topic><topic>Titanium nitride</topic><topic>Traveling wave amplifiers</topic><topic>Traveling waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giachero, A.</creatorcontrib><creatorcontrib>Vissers, M.</creatorcontrib><creatorcontrib>Wheeler, J.</creatorcontrib><creatorcontrib>Howe, L.</creatorcontrib><creatorcontrib>Gao, J.</creatorcontrib><creatorcontrib>Austermann, J.</creatorcontrib><creatorcontrib>Hubmayr, J.</creatorcontrib><creatorcontrib>Nucciotti, A.</creatorcontrib><creatorcontrib>Ullom, J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Journal of low temperature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giachero, A.</au><au>Vissers, M.</au><au>Wheeler, J.</au><au>Howe, L.</au><au>Gao, J.</au><au>Austermann, J.</au><au>Hubmayr, J.</au><au>Nucciotti, A.</au><au>Ullom, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic Inductance Traveling Wave Amplifier Designs for Practical Microwave Readout Applications</atitle><jtitle>Journal of low temperature physics</jtitle><stitle>J Low Temp Phys</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>215</volume><issue>3-4</issue><spage>152</spage><epage>160</epage><pages>152-160</pages><issn>0022-2291</issn><eissn>1573-7357</eissn><abstract>A Kinetic Inductance Traveling Wave Amplifier (KIT) utilizes the nonlinear kinetic inductance of superconducting films, particularly niobium titanium nitride (NbTiN), for parametric amplification. These amplifiers achieve remarkable performance in terms of gain, bandwidth, and compression power and frequently approach the quantum limit for noise. However, most KIT demonstrations have been isolated from practical device readout systems. Using a KIT as the first amplifier in the readout chain of an unoptimized microwave SQUID multiplexer coupled to a transition-edge sensor microcalorimeter, we see an initial improvement in the flux noise [
1
]. One challenge in KIT integration is the considerable microwave pump power required to drive the non-linearity. To address this, we have initiated efforts to reduce the pump power by using thinner NbTiN films and an inverted microstrip transmission line design. In this article, we present the new transmission line design, fabrication procedure, and initial device characterization—including gain and added noise. These devices exhibit over 10 dB of gain with a 3 dB bandwidth of approximately 5.5–7.25 GHz, a maximum practical gain of 12 dB, and typical gain ripple under 4 dB peak to peak. We observe an appreciable impedance mismatch in the NbTiN transmission line, which is likely the source of the majority of the gain ripple. Finally, we perform an initial noise characterization and demonstrate system-added noise of three quanta or less over nearly the entire 3 dB bandwidth.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10909-024-03078-1</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2291 |
ispartof | Journal of low temperature physics, 2024-05, Vol.215 (3-4), p.152-160 |
issn | 0022-2291 1573-7357 |
language | eng |
recordid | cdi_proquest_journals_3064985764 |
source | SpringerLink Journals |
subjects | Amplification Bandwidths Characterization and Evaluation of Materials Condensed Matter Physics Inductance Magnetic Materials Magnetism Microstrip transmission lines Niobium Physics Physics and Astronomy Read out systems Ripples Superconducting films Superconducting quantum interference devices Titanium nitride Traveling wave amplifiers Traveling waves |
title | Kinetic Inductance Traveling Wave Amplifier Designs for Practical Microwave Readout Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A14%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20Inductance%20Traveling%20Wave%20Amplifier%20Designs%20for%20Practical%20Microwave%20Readout%20Applications&rft.jtitle=Journal%20of%20low%20temperature%20physics&rft.au=Giachero,%20A.&rft.date=2024-05-01&rft.volume=215&rft.issue=3-4&rft.spage=152&rft.epage=160&rft.pages=152-160&rft.issn=0022-2291&rft.eissn=1573-7357&rft_id=info:doi/10.1007/s10909-024-03078-1&rft_dat=%3Cproquest_cross%3E3064985764%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064985764&rft_id=info:pmid/&rfr_iscdi=true |