Gradient in the Problem of Controlling Processes Described by Linear Pseudohyperbolic Equations

The paper considers the problem of controlling processes whose mathematical model is an initial–boundary value problem for a pseudohyperbolic linear differential equation of high order in the spatial variable and second order in the time variable. The pseudohyperbolic equation is a generalization of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations 2024, Vol.60 (2), p.215-226
1. Verfasser: Romanenkov, A. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 226
container_issue 2
container_start_page 215
container_title Differential equations
container_volume 60
creator Romanenkov, A. M.
description The paper considers the problem of controlling processes whose mathematical model is an initial–boundary value problem for a pseudohyperbolic linear differential equation of high order in the spatial variable and second order in the time variable. The pseudohyperbolic equation is a generalization of the ordinary hyperbolic equation typical in vibration theory. As examples, we consider models of vibrations of moving elastic materials. For the model problems, an energy identity is established and conditions for the uniqueness of a solution are formulated. As an optimization problem, we consider the problem of controlling the right-hand side so as to minimize a quadratic integral functional that evaluates the proximity of the solution to the objective function. From the original functional, a transition is made to a majorant functional, for which the corresponding upper bound is established. An explicit expression for the gradient of this functional is obtained, and adjoint initial–boundary value problems are derived.
doi_str_mv 10.1134/S001226612402006X
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_3064985642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064985642</sourcerecordid><originalsourceid>FETCH-LOGICAL-p156t-776cf077b77573afc3daea943585a664d69dcbb10f6da02b54b4fe94e13a476a3</originalsourceid><addsrcrecordid>eNplkEtLw0AUhQdRsD5-gLsB19E772QptVahYEEFd2EmubEpcSadSRb99zZUcOHqwjkf53APITcM7hgT8v4NgHGuNeMSOID-PCEzpiHPBOTilMwmO5v8c3KR0hYACsPUjJTLaOsW_UBbT4cN0nUMrsNvGho6D36Ioeta_zXJFaaEiT5iqmLrsKZuT1etRxvpOuFYh82-x-hC11Z0sRvt0AafrshZY7uE17_3knw8Ld7nz9nqdfkyf1hlPVN6yIzRVQPGOGOUEbapRG3RFlKoXFmtZa2LunKOQaNrC9wp6WSDhUQmrDTaiktye8ztY9iNmIZyG8boD5WlAC2LXGnJDxQ_UqmPh68w_lEMymnI8t-Q4gecAGaq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064985642</pqid></control><display><type>article</type><title>Gradient in the Problem of Controlling Processes Described by Linear Pseudohyperbolic Equations</title><source>Springer Journals</source><creator>Romanenkov, A. M.</creator><creatorcontrib>Romanenkov, A. M.</creatorcontrib><description>The paper considers the problem of controlling processes whose mathematical model is an initial–boundary value problem for a pseudohyperbolic linear differential equation of high order in the spatial variable and second order in the time variable. The pseudohyperbolic equation is a generalization of the ordinary hyperbolic equation typical in vibration theory. As examples, we consider models of vibrations of moving elastic materials. For the model problems, an energy identity is established and conditions for the uniqueness of a solution are formulated. As an optimization problem, we consider the problem of controlling the right-hand side so as to minimize a quadratic integral functional that evaluates the proximity of the solution to the objective function. From the original functional, a transition is made to a majorant functional, for which the corresponding upper bound is established. An explicit expression for the gradient of this functional is obtained, and adjoint initial–boundary value problems are derived.</description><identifier>ISSN: 0012-2661</identifier><identifier>EISSN: 1608-3083</identifier><identifier>DOI: 10.1134/S001226612402006X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Boundary value problems ; Control Theory ; Difference and Functional Equations ; Differential equations ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Optimization ; Ordinary Differential Equations ; Partial Differential Equations ; Upper bounds</subject><ispartof>Differential equations, 2024, Vol.60 (2), p.215-226</ispartof><rights>Pleiades Publishing, Ltd. 2024</rights><rights>Pleiades Publishing, Ltd. 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p156t-776cf077b77573afc3daea943585a664d69dcbb10f6da02b54b4fe94e13a476a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S001226612402006X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S001226612402006X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Romanenkov, A. M.</creatorcontrib><title>Gradient in the Problem of Controlling Processes Described by Linear Pseudohyperbolic Equations</title><title>Differential equations</title><addtitle>Diff Equat</addtitle><description>The paper considers the problem of controlling processes whose mathematical model is an initial–boundary value problem for a pseudohyperbolic linear differential equation of high order in the spatial variable and second order in the time variable. The pseudohyperbolic equation is a generalization of the ordinary hyperbolic equation typical in vibration theory. As examples, we consider models of vibrations of moving elastic materials. For the model problems, an energy identity is established and conditions for the uniqueness of a solution are formulated. As an optimization problem, we consider the problem of controlling the right-hand side so as to minimize a quadratic integral functional that evaluates the proximity of the solution to the objective function. From the original functional, a transition is made to a majorant functional, for which the corresponding upper bound is established. An explicit expression for the gradient of this functional is obtained, and adjoint initial–boundary value problems are derived.</description><subject>Boundary value problems</subject><subject>Control Theory</subject><subject>Difference and Functional Equations</subject><subject>Differential equations</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Optimization</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Upper bounds</subject><issn>0012-2661</issn><issn>1608-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNplkEtLw0AUhQdRsD5-gLsB19E772QptVahYEEFd2EmubEpcSadSRb99zZUcOHqwjkf53APITcM7hgT8v4NgHGuNeMSOID-PCEzpiHPBOTilMwmO5v8c3KR0hYACsPUjJTLaOsW_UBbT4cN0nUMrsNvGho6D36Ioeta_zXJFaaEiT5iqmLrsKZuT1etRxvpOuFYh82-x-hC11Z0sRvt0AafrshZY7uE17_3knw8Ld7nz9nqdfkyf1hlPVN6yIzRVQPGOGOUEbapRG3RFlKoXFmtZa2LunKOQaNrC9wp6WSDhUQmrDTaiktye8ztY9iNmIZyG8boD5WlAC2LXGnJDxQ_UqmPh68w_lEMymnI8t-Q4gecAGaq</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Romanenkov, A. M.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2024</creationdate><title>Gradient in the Problem of Controlling Processes Described by Linear Pseudohyperbolic Equations</title><author>Romanenkov, A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p156t-776cf077b77573afc3daea943585a664d69dcbb10f6da02b54b4fe94e13a476a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boundary value problems</topic><topic>Control Theory</topic><topic>Difference and Functional Equations</topic><topic>Differential equations</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Optimization</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romanenkov, A. M.</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romanenkov, A. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gradient in the Problem of Controlling Processes Described by Linear Pseudohyperbolic Equations</atitle><jtitle>Differential equations</jtitle><stitle>Diff Equat</stitle><date>2024</date><risdate>2024</risdate><volume>60</volume><issue>2</issue><spage>215</spage><epage>226</epage><pages>215-226</pages><issn>0012-2661</issn><eissn>1608-3083</eissn><abstract>The paper considers the problem of controlling processes whose mathematical model is an initial–boundary value problem for a pseudohyperbolic linear differential equation of high order in the spatial variable and second order in the time variable. The pseudohyperbolic equation is a generalization of the ordinary hyperbolic equation typical in vibration theory. As examples, we consider models of vibrations of moving elastic materials. For the model problems, an energy identity is established and conditions for the uniqueness of a solution are formulated. As an optimization problem, we consider the problem of controlling the right-hand side so as to minimize a quadratic integral functional that evaluates the proximity of the solution to the objective function. From the original functional, a transition is made to a majorant functional, for which the corresponding upper bound is established. An explicit expression for the gradient of this functional is obtained, and adjoint initial–boundary value problems are derived.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S001226612402006X</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-2661
ispartof Differential equations, 2024, Vol.60 (2), p.215-226
issn 0012-2661
1608-3083
language eng
recordid cdi_proquest_journals_3064985642
source Springer Journals
subjects Boundary value problems
Control Theory
Difference and Functional Equations
Differential equations
Mathematical models
Mathematics
Mathematics and Statistics
Optimization
Ordinary Differential Equations
Partial Differential Equations
Upper bounds
title Gradient in the Problem of Controlling Processes Described by Linear Pseudohyperbolic Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T17%3A05%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gradient%20in%20the%20Problem%20of%20Controlling%20Processes%20Described%20by%20Linear%20Pseudohyperbolic%20Equations&rft.jtitle=Differential%20equations&rft.au=Romanenkov,%20A.%20M.&rft.date=2024&rft.volume=60&rft.issue=2&rft.spage=215&rft.epage=226&rft.pages=215-226&rft.issn=0012-2661&rft.eissn=1608-3083&rft_id=info:doi/10.1134/S001226612402006X&rft_dat=%3Cproquest_sprin%3E3064985642%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064985642&rft_id=info:pmid/&rfr_iscdi=true