Numerical investigation of magnetic pulse welding of D9 steel tube to SS316LN end plug using Lagrangian finite element and smoothed particle hydrodynamics (SPH) and its experimental validation

Magnetic pulse welding (MPW) offers a promising alternative to traditional fusion welding techniques for joining dissimilar materials like D9 steel and SS316LN. This study employs a combined finite element Lagrangian and smoothed particle hydrodynamics (SPH) approach to numerically investigate and o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Brazilian Society of Mechanical Sciences and Engineering 2024-07, Vol.46 (7), Article 430
Hauptverfasser: Kulkarni, M. R., Kumar, Deepak, Kolge, Tanmay, Nandy, Arup, Kore, Sachin D., Bakhtsingh, R. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Journal of the Brazilian Society of Mechanical Sciences and Engineering
container_volume 46
creator Kulkarni, M. R.
Kumar, Deepak
Kolge, Tanmay
Nandy, Arup
Kore, Sachin D.
Bakhtsingh, R. I.
description Magnetic pulse welding (MPW) offers a promising alternative to traditional fusion welding techniques for joining dissimilar materials like D9 steel and SS316LN. This study employs a combined finite element Lagrangian and smoothed particle hydrodynamics (SPH) approach to numerically investigate and optimise the MPW of a D9 steel tube to an SS 316LN end plug. The simulation methodology captured the electromagnetic field, structural deformation, and weld morphology with high fidelity. Results demonstrated close agreement between simulated deformation patterns and experimental observations. SPH simulations successfully reproduced metal jet emission, waviness formation, and key field variables, providing valuable insights into the underlying physics and predicting weldability window. Discharge voltage of 17 kV and 18 kV and taper angle of 8 degrees is observed to be best suited as per simulation as well as experiment considering waviness formation as the weldability criteria. X-ray tomography further corroborated the uniformity of the welded region in the working zone. This research underscores the effectiveness of combined numerical and experimental approaches in advancing the understanding and optimisation of MPW processes for dissimilar material joining applications.
doi_str_mv 10.1007/s40430-024-05018-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3064985391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064985391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-2c2f91289256d07ff775c5739d1d2eb2c32243b593a8bb5e7e68c0e14a496ac63</originalsourceid><addsrcrecordid>eNp9kc9u1DAQxiMEEqXwApxG4gKHgP_Ejn1EpVCkVUFaOFuOM0ldJU6wncK-HY-GdxeJG6exNL9v5ht_VfWSkreUkPZdakjDSU1YUxNBqKrZo-qCKiJrLjV9XN6yVbVQrXpaPUvpnhDOhBQX1e_bbcbonZ3AhwdM2Y82-yXAMsBsx4DZO1i3KSH8xKn3YTx2PmhIGXGCvHUIeYH9nlO5uwUMPazTNsKWjujOjtGG0dsAgw8-I-CEM4YMtoBpXpZ8h0VhY1kzIdwd-rj0h2Bn7xK83n-9eXMifU6Av9Zi9CguXh_s5PuT0efVk8EWey_-1svq-8frb1c39e7Lp89X73e1Y4Tkmjk2aMqULmf3pB2GthVOtFz3tGfYMccZa3gnNLeq6wS2KJUjSBvbaGmd5JfVq_PcNS4_tvJR5n7ZYigrDSey0UpwTQvFzpSLS0oRB7MWzzYeDCXmmJQ5J2VKUuaUlGFFxM-iVOAwYvw3-j-qP79XmTo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064985391</pqid></control><display><type>article</type><title>Numerical investigation of magnetic pulse welding of D9 steel tube to SS316LN end plug using Lagrangian finite element and smoothed particle hydrodynamics (SPH) and its experimental validation</title><source>SpringerNature Journals</source><creator>Kulkarni, M. R. ; Kumar, Deepak ; Kolge, Tanmay ; Nandy, Arup ; Kore, Sachin D. ; Bakhtsingh, R. I.</creator><creatorcontrib>Kulkarni, M. R. ; Kumar, Deepak ; Kolge, Tanmay ; Nandy, Arup ; Kore, Sachin D. ; Bakhtsingh, R. I.</creatorcontrib><description>Magnetic pulse welding (MPW) offers a promising alternative to traditional fusion welding techniques for joining dissimilar materials like D9 steel and SS316LN. This study employs a combined finite element Lagrangian and smoothed particle hydrodynamics (SPH) approach to numerically investigate and optimise the MPW of a D9 steel tube to an SS 316LN end plug. The simulation methodology captured the electromagnetic field, structural deformation, and weld morphology with high fidelity. Results demonstrated close agreement between simulated deformation patterns and experimental observations. SPH simulations successfully reproduced metal jet emission, waviness formation, and key field variables, providing valuable insights into the underlying physics and predicting weldability window. Discharge voltage of 17 kV and 18 kV and taper angle of 8 degrees is observed to be best suited as per simulation as well as experiment considering waviness formation as the weldability criteria. X-ray tomography further corroborated the uniformity of the welded region in the working zone. This research underscores the effectiveness of combined numerical and experimental approaches in advancing the understanding and optimisation of MPW processes for dissimilar material joining applications.</description><identifier>ISSN: 1678-5878</identifier><identifier>EISSN: 1806-3691</identifier><identifier>DOI: 10.1007/s40430-024-05018-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Austenitic stainless steels ; Deformation ; Dissimilar material joining ; Electromagnetic fields ; Engineering ; Fluid mechanics ; Fusion welding ; Mathematical analysis ; Mechanical Engineering ; Plugs ; Smooth particle hydrodynamics ; Steel tubes ; Technical Paper ; Waviness ; Weldability ; Welding</subject><ispartof>Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2024-07, Vol.46 (7), Article 430</ispartof><rights>The Author(s), under exclusive licence to The Brazilian Society of Mechanical Sciences and Engineering 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-2c2f91289256d07ff775c5739d1d2eb2c32243b593a8bb5e7e68c0e14a496ac63</cites><orcidid>0000-0003-2800-4540</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40430-024-05018-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40430-024-05018-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kulkarni, M. R.</creatorcontrib><creatorcontrib>Kumar, Deepak</creatorcontrib><creatorcontrib>Kolge, Tanmay</creatorcontrib><creatorcontrib>Nandy, Arup</creatorcontrib><creatorcontrib>Kore, Sachin D.</creatorcontrib><creatorcontrib>Bakhtsingh, R. I.</creatorcontrib><title>Numerical investigation of magnetic pulse welding of D9 steel tube to SS316LN end plug using Lagrangian finite element and smoothed particle hydrodynamics (SPH) and its experimental validation</title><title>Journal of the Brazilian Society of Mechanical Sciences and Engineering</title><addtitle>J Braz. Soc. Mech. Sci. Eng</addtitle><description>Magnetic pulse welding (MPW) offers a promising alternative to traditional fusion welding techniques for joining dissimilar materials like D9 steel and SS316LN. This study employs a combined finite element Lagrangian and smoothed particle hydrodynamics (SPH) approach to numerically investigate and optimise the MPW of a D9 steel tube to an SS 316LN end plug. The simulation methodology captured the electromagnetic field, structural deformation, and weld morphology with high fidelity. Results demonstrated close agreement between simulated deformation patterns and experimental observations. SPH simulations successfully reproduced metal jet emission, waviness formation, and key field variables, providing valuable insights into the underlying physics and predicting weldability window. Discharge voltage of 17 kV and 18 kV and taper angle of 8 degrees is observed to be best suited as per simulation as well as experiment considering waviness formation as the weldability criteria. X-ray tomography further corroborated the uniformity of the welded region in the working zone. This research underscores the effectiveness of combined numerical and experimental approaches in advancing the understanding and optimisation of MPW processes for dissimilar material joining applications.</description><subject>Austenitic stainless steels</subject><subject>Deformation</subject><subject>Dissimilar material joining</subject><subject>Electromagnetic fields</subject><subject>Engineering</subject><subject>Fluid mechanics</subject><subject>Fusion welding</subject><subject>Mathematical analysis</subject><subject>Mechanical Engineering</subject><subject>Plugs</subject><subject>Smooth particle hydrodynamics</subject><subject>Steel tubes</subject><subject>Technical Paper</subject><subject>Waviness</subject><subject>Weldability</subject><subject>Welding</subject><issn>1678-5878</issn><issn>1806-3691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kc9u1DAQxiMEEqXwApxG4gKHgP_Ejn1EpVCkVUFaOFuOM0ldJU6wncK-HY-GdxeJG6exNL9v5ht_VfWSkreUkPZdakjDSU1YUxNBqKrZo-qCKiJrLjV9XN6yVbVQrXpaPUvpnhDOhBQX1e_bbcbonZ3AhwdM2Y82-yXAMsBsx4DZO1i3KSH8xKn3YTx2PmhIGXGCvHUIeYH9nlO5uwUMPazTNsKWjujOjtGG0dsAgw8-I-CEM4YMtoBpXpZ8h0VhY1kzIdwd-rj0h2Bn7xK83n-9eXMifU6Av9Zi9CguXh_s5PuT0efVk8EWey_-1svq-8frb1c39e7Lp89X73e1Y4Tkmjk2aMqULmf3pB2GthVOtFz3tGfYMccZa3gnNLeq6wS2KJUjSBvbaGmd5JfVq_PcNS4_tvJR5n7ZYigrDSey0UpwTQvFzpSLS0oRB7MWzzYeDCXmmJQ5J2VKUuaUlGFFxM-iVOAwYvw3-j-qP79XmTo</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Kulkarni, M. R.</creator><creator>Kumar, Deepak</creator><creator>Kolge, Tanmay</creator><creator>Nandy, Arup</creator><creator>Kore, Sachin D.</creator><creator>Bakhtsingh, R. I.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2800-4540</orcidid></search><sort><creationdate>20240701</creationdate><title>Numerical investigation of magnetic pulse welding of D9 steel tube to SS316LN end plug using Lagrangian finite element and smoothed particle hydrodynamics (SPH) and its experimental validation</title><author>Kulkarni, M. R. ; Kumar, Deepak ; Kolge, Tanmay ; Nandy, Arup ; Kore, Sachin D. ; Bakhtsingh, R. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-2c2f91289256d07ff775c5739d1d2eb2c32243b593a8bb5e7e68c0e14a496ac63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Austenitic stainless steels</topic><topic>Deformation</topic><topic>Dissimilar material joining</topic><topic>Electromagnetic fields</topic><topic>Engineering</topic><topic>Fluid mechanics</topic><topic>Fusion welding</topic><topic>Mathematical analysis</topic><topic>Mechanical Engineering</topic><topic>Plugs</topic><topic>Smooth particle hydrodynamics</topic><topic>Steel tubes</topic><topic>Technical Paper</topic><topic>Waviness</topic><topic>Weldability</topic><topic>Welding</topic><toplevel>online_resources</toplevel><creatorcontrib>Kulkarni, M. R.</creatorcontrib><creatorcontrib>Kumar, Deepak</creatorcontrib><creatorcontrib>Kolge, Tanmay</creatorcontrib><creatorcontrib>Nandy, Arup</creatorcontrib><creatorcontrib>Kore, Sachin D.</creatorcontrib><creatorcontrib>Bakhtsingh, R. I.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Brazilian Society of Mechanical Sciences and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kulkarni, M. R.</au><au>Kumar, Deepak</au><au>Kolge, Tanmay</au><au>Nandy, Arup</au><au>Kore, Sachin D.</au><au>Bakhtsingh, R. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical investigation of magnetic pulse welding of D9 steel tube to SS316LN end plug using Lagrangian finite element and smoothed particle hydrodynamics (SPH) and its experimental validation</atitle><jtitle>Journal of the Brazilian Society of Mechanical Sciences and Engineering</jtitle><stitle>J Braz. Soc. Mech. Sci. Eng</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>46</volume><issue>7</issue><artnum>430</artnum><issn>1678-5878</issn><eissn>1806-3691</eissn><abstract>Magnetic pulse welding (MPW) offers a promising alternative to traditional fusion welding techniques for joining dissimilar materials like D9 steel and SS316LN. This study employs a combined finite element Lagrangian and smoothed particle hydrodynamics (SPH) approach to numerically investigate and optimise the MPW of a D9 steel tube to an SS 316LN end plug. The simulation methodology captured the electromagnetic field, structural deformation, and weld morphology with high fidelity. Results demonstrated close agreement between simulated deformation patterns and experimental observations. SPH simulations successfully reproduced metal jet emission, waviness formation, and key field variables, providing valuable insights into the underlying physics and predicting weldability window. Discharge voltage of 17 kV and 18 kV and taper angle of 8 degrees is observed to be best suited as per simulation as well as experiment considering waviness formation as the weldability criteria. X-ray tomography further corroborated the uniformity of the welded region in the working zone. This research underscores the effectiveness of combined numerical and experimental approaches in advancing the understanding and optimisation of MPW processes for dissimilar material joining applications.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40430-024-05018-2</doi><orcidid>https://orcid.org/0000-0003-2800-4540</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1678-5878
ispartof Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2024-07, Vol.46 (7), Article 430
issn 1678-5878
1806-3691
language eng
recordid cdi_proquest_journals_3064985391
source SpringerNature Journals
subjects Austenitic stainless steels
Deformation
Dissimilar material joining
Electromagnetic fields
Engineering
Fluid mechanics
Fusion welding
Mathematical analysis
Mechanical Engineering
Plugs
Smooth particle hydrodynamics
Steel tubes
Technical Paper
Waviness
Weldability
Welding
title Numerical investigation of magnetic pulse welding of D9 steel tube to SS316LN end plug using Lagrangian finite element and smoothed particle hydrodynamics (SPH) and its experimental validation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A47%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20investigation%20of%20magnetic%20pulse%20welding%20of%20D9%20steel%20tube%20to%20SS316LN%20end%20plug%20using%20Lagrangian%20finite%20element%20and%20smoothed%20particle%20hydrodynamics%20(SPH)%20and%20its%20experimental%20validation&rft.jtitle=Journal%20of%20the%20Brazilian%20Society%20of%20Mechanical%20Sciences%20and%20Engineering&rft.au=Kulkarni,%20M.%20R.&rft.date=2024-07-01&rft.volume=46&rft.issue=7&rft.artnum=430&rft.issn=1678-5878&rft.eissn=1806-3691&rft_id=info:doi/10.1007/s40430-024-05018-2&rft_dat=%3Cproquest_cross%3E3064985391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064985391&rft_id=info:pmid/&rfr_iscdi=true