Logistic Equation with Long Delay Feedback

We study the local dynamics of the delay logistic equation with an additional feedback containing a large delay. Critical cases in the problem of stability of the zero equilibrium state are identified, and it is shown that they are infinite-dimensional. The well-known methods for studying local dyna...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations 2024, Vol.60 (2), p.145-151
1. Verfasser: Kashchenko, S. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 151
container_issue 2
container_start_page 145
container_title Differential equations
container_volume 60
creator Kashchenko, S. A.
description We study the local dynamics of the delay logistic equation with an additional feedback containing a large delay. Critical cases in the problem of stability of the zero equilibrium state are identified, and it is shown that they are infinite-dimensional. The well-known methods for studying local dynamics based on the theory of invariant integral manifolds and normal forms do not apply here. The methods of infinite-dimensional normalization proposed by the author are used and developed. As the main results, special nonlinear boundary value problems of parabolic type are constructed, which play the role of normal forms. They determine the leading terms of the asymptotic expansions of solutions of the original equation and are called quasinormal forms.
doi_str_mv 10.1134/S0012266124020010
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_3064983574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064983574</sourcerecordid><originalsourceid>FETCH-LOGICAL-p156t-a30921e0457700e0b95c91bb9cd2009edcb8de0d7beda18ef379436d789324763</originalsourceid><addsrcrecordid>eNplkE9Lw0AQxRdRMFY_gLeANyE6s7vZP0eprQoBD-o5ZLPTmFqSNJsgfvsmVPDgaR68H-8Nj7FrhDtEIe_fAJBzpZBL4JOGExahApMIMOKURbOdzP45uwhhCwBWYxqx26yt6jDUZbzaj8VQt038XQ-fcdY2VfxIu-InXhN5V5Rfl-xsU-wCXf3eBftYr96Xz0n2-vSyfMiSDlM1JIUAy5FAploDEDiblhads6WfHrPkS2c8gdeOfIGGNkJbKZTXxgoutRILdnPM7fp2P1IY8m079s1UmQtQ0hqRajlR_EiFrq-bivo_CiGfN8n_bSIOx7RRSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064983574</pqid></control><display><type>article</type><title>Logistic Equation with Long Delay Feedback</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kashchenko, S. A.</creator><creatorcontrib>Kashchenko, S. A.</creatorcontrib><description>We study the local dynamics of the delay logistic equation with an additional feedback containing a large delay. Critical cases in the problem of stability of the zero equilibrium state are identified, and it is shown that they are infinite-dimensional. The well-known methods for studying local dynamics based on the theory of invariant integral manifolds and normal forms do not apply here. The methods of infinite-dimensional normalization proposed by the author are used and developed. As the main results, special nonlinear boundary value problems of parabolic type are constructed, which play the role of normal forms. They determine the leading terms of the asymptotic expansions of solutions of the original equation and are called quasinormal forms.</description><identifier>ISSN: 0012-2661</identifier><identifier>EISSN: 1608-3083</identifier><identifier>DOI: 10.1134/S0012266124020010</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Asymptotic series ; Boundary value problems ; Delay ; Difference and Functional Equations ; Feedback ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations ; Partial Differential Equations</subject><ispartof>Differential equations, 2024, Vol.60 (2), p.145-151</ispartof><rights>Pleiades Publishing, Ltd. 2024</rights><rights>Pleiades Publishing, Ltd. 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p156t-a30921e0457700e0b95c91bb9cd2009edcb8de0d7beda18ef379436d789324763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0012266124020010$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0012266124020010$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kashchenko, S. A.</creatorcontrib><title>Logistic Equation with Long Delay Feedback</title><title>Differential equations</title><addtitle>Diff Equat</addtitle><description>We study the local dynamics of the delay logistic equation with an additional feedback containing a large delay. Critical cases in the problem of stability of the zero equilibrium state are identified, and it is shown that they are infinite-dimensional. The well-known methods for studying local dynamics based on the theory of invariant integral manifolds and normal forms do not apply here. The methods of infinite-dimensional normalization proposed by the author are used and developed. As the main results, special nonlinear boundary value problems of parabolic type are constructed, which play the role of normal forms. They determine the leading terms of the asymptotic expansions of solutions of the original equation and are called quasinormal forms.</description><subject>Asymptotic series</subject><subject>Boundary value problems</subject><subject>Delay</subject><subject>Difference and Functional Equations</subject><subject>Feedback</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><issn>0012-2661</issn><issn>1608-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNplkE9Lw0AQxRdRMFY_gLeANyE6s7vZP0eprQoBD-o5ZLPTmFqSNJsgfvsmVPDgaR68H-8Nj7FrhDtEIe_fAJBzpZBL4JOGExahApMIMOKURbOdzP45uwhhCwBWYxqx26yt6jDUZbzaj8VQt038XQ-fcdY2VfxIu-InXhN5V5Rfl-xsU-wCXf3eBftYr96Xz0n2-vSyfMiSDlM1JIUAy5FAploDEDiblhads6WfHrPkS2c8gdeOfIGGNkJbKZTXxgoutRILdnPM7fp2P1IY8m079s1UmQtQ0hqRajlR_EiFrq-bivo_CiGfN8n_bSIOx7RRSw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Kashchenko, S. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2024</creationdate><title>Logistic Equation with Long Delay Feedback</title><author>Kashchenko, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p156t-a30921e0457700e0b95c91bb9cd2009edcb8de0d7beda18ef379436d789324763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Asymptotic series</topic><topic>Boundary value problems</topic><topic>Delay</topic><topic>Difference and Functional Equations</topic><topic>Feedback</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kashchenko, S. A.</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kashchenko, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Logistic Equation with Long Delay Feedback</atitle><jtitle>Differential equations</jtitle><stitle>Diff Equat</stitle><date>2024</date><risdate>2024</risdate><volume>60</volume><issue>2</issue><spage>145</spage><epage>151</epage><pages>145-151</pages><issn>0012-2661</issn><eissn>1608-3083</eissn><abstract>We study the local dynamics of the delay logistic equation with an additional feedback containing a large delay. Critical cases in the problem of stability of the zero equilibrium state are identified, and it is shown that they are infinite-dimensional. The well-known methods for studying local dynamics based on the theory of invariant integral manifolds and normal forms do not apply here. The methods of infinite-dimensional normalization proposed by the author are used and developed. As the main results, special nonlinear boundary value problems of parabolic type are constructed, which play the role of normal forms. They determine the leading terms of the asymptotic expansions of solutions of the original equation and are called quasinormal forms.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0012266124020010</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-2661
ispartof Differential equations, 2024, Vol.60 (2), p.145-151
issn 0012-2661
1608-3083
language eng
recordid cdi_proquest_journals_3064983574
source SpringerLink Journals - AutoHoldings
subjects Asymptotic series
Boundary value problems
Delay
Difference and Functional Equations
Feedback
Mathematics
Mathematics and Statistics
Ordinary Differential Equations
Partial Differential Equations
title Logistic Equation with Long Delay Feedback
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A08%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Logistic%20Equation%20with%20Long%20Delay%20Feedback&rft.jtitle=Differential%20equations&rft.au=Kashchenko,%20S.%20A.&rft.date=2024&rft.volume=60&rft.issue=2&rft.spage=145&rft.epage=151&rft.pages=145-151&rft.issn=0012-2661&rft.eissn=1608-3083&rft_id=info:doi/10.1134/S0012266124020010&rft_dat=%3Cproquest_sprin%3E3064983574%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064983574&rft_id=info:pmid/&rfr_iscdi=true