Non‐Destructive Tomographic Nanoscale Imaging of Ferroelectric Domain Walls
Extraordinary physical properties arise at polar interfaces in oxide materials, including the emergence of 2D electron gases, sheet‐superconductivity, and multiferroicity. A special type of polar interface is ferroelectric domain walls, where electronic reconstruction phenomena can be driven by boun...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2024-06, Vol.34 (23), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 23 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 34 |
creator | He, Jiali Zahn, Manuel Ushakov, Ivan N. Richarz, Leonie Ludacka, Ursula Roede, Erik D. Yan, Zewu Bourret, Edith Kézsmárki, István Catalan, Gustau Meier, Dennis |
description | Extraordinary physical properties arise at polar interfaces in oxide materials, including the emergence of 2D electron gases, sheet‐superconductivity, and multiferroicity. A special type of polar interface is ferroelectric domain walls, where electronic reconstruction phenomena can be driven by bound charges. Great progress has been achieved in the characterization of such domain walls and, over the last decade, their potential for next‐generation nanotechnology has become clear. Established tomography techniques, however, are either destructive or offer insufficient spatial resolution, creating a pressing demand for 3D imaging compatible with future fabrication processes. Here, non‐destructive tomographic imaging of ferroelectric domain walls is demonstrated using secondary electrons. Utilizing conventional scanning electron microscopy (SEM), the position, orientation, and charge state of hidden domain walls are reconstructed at distances up to several hundreds of nanometers away from the surface. A mathematical model is derived that links the SEM intensity variations at the surface to the local domain wall properties, enabling non‐destructive tomography with good noise tolerance on the timescale of seconds. The SEM‐based approach facilitates high‐throughput screening of materials with functional domain walls and domain‐wall‐based devices, which is essential for monitoring during the production of device architectures and quality control in real‐time.
Scanning electron microscopy is applied for tomographic imaging of ferroelectric domain walls. The position, orientation, and charge state of otherwise hidden walls are reconstructed, and a model is derived linking measured intensity variations to local domain‐wall properties. The approach facilitates high‐throughput screening of materials with functional domain walls, enabling monitoring during the production of devices and quality control in real‐time. |
doi_str_mv | 10.1002/adfm.202314011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3064822426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064822426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3571-a1e204231e07f3ca1ebfc42c8fca1f9fc59a139db206f9d0cd203206b58f6fdd3</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqVw5RyJc8qunebnWLUUKrXlUgQ3y3HskiqJg92CeuMReEaeBFdB5chpZ6VvdkdDyDXCAAHorSh0PaBAGUaAeEJ6GGMcMqDp6VHjyzm5cG4DgEnCoh5ZLE3z_fk1UW5rd3JbvqtgZWqztqJ9LWWwFI1xUlQqmNViXTbrwOhgqqw1qlJyaz0yMbUom-BZVJW7JGdaVE5d_c4-eZrercYP4fzxfjYezUPJhgmGAhWFyAdVkGgm_ZprGVGZaq91puUwE8iyIqcQ66wAWVBgXufDVMe6KFif3HR3W2vedj4735idbfxLziCOUkojGntq0FHSGues0ry1ZS3sniPwQ2X8UBk_VuYNWWf4KCu1_4fmo8l08ef9Aa7scVE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064822426</pqid></control><display><type>article</type><title>Non‐Destructive Tomographic Nanoscale Imaging of Ferroelectric Domain Walls</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>He, Jiali ; Zahn, Manuel ; Ushakov, Ivan N. ; Richarz, Leonie ; Ludacka, Ursula ; Roede, Erik D. ; Yan, Zewu ; Bourret, Edith ; Kézsmárki, István ; Catalan, Gustau ; Meier, Dennis</creator><creatorcontrib>He, Jiali ; Zahn, Manuel ; Ushakov, Ivan N. ; Richarz, Leonie ; Ludacka, Ursula ; Roede, Erik D. ; Yan, Zewu ; Bourret, Edith ; Kézsmárki, István ; Catalan, Gustau ; Meier, Dennis</creatorcontrib><description>Extraordinary physical properties arise at polar interfaces in oxide materials, including the emergence of 2D electron gases, sheet‐superconductivity, and multiferroicity. A special type of polar interface is ferroelectric domain walls, where electronic reconstruction phenomena can be driven by bound charges. Great progress has been achieved in the characterization of such domain walls and, over the last decade, their potential for next‐generation nanotechnology has become clear. Established tomography techniques, however, are either destructive or offer insufficient spatial resolution, creating a pressing demand for 3D imaging compatible with future fabrication processes. Here, non‐destructive tomographic imaging of ferroelectric domain walls is demonstrated using secondary electrons. Utilizing conventional scanning electron microscopy (SEM), the position, orientation, and charge state of hidden domain walls are reconstructed at distances up to several hundreds of nanometers away from the surface. A mathematical model is derived that links the SEM intensity variations at the surface to the local domain wall properties, enabling non‐destructive tomography with good noise tolerance on the timescale of seconds. The SEM‐based approach facilitates high‐throughput screening of materials with functional domain walls and domain‐wall‐based devices, which is essential for monitoring during the production of device architectures and quality control in real‐time.
Scanning electron microscopy is applied for tomographic imaging of ferroelectric domain walls. The position, orientation, and charge state of otherwise hidden walls are reconstructed, and a model is derived linking measured intensity variations to local domain‐wall properties. The approach facilitates high‐throughput screening of materials with functional domain walls, enabling monitoring during the production of devices and quality control in real‐time.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202314011</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>3D imaging ; conductive atomic force microscopy ; correlated microscopy ; Domain walls ; ferroelectric ; Ferroelectric domains ; Ferroelectric materials ; Ferroelectricity ; Image reconstruction ; Noise tolerance ; Physical properties ; Quality control ; Scanning electron microscopy ; secondary electron microscopy ; Spatial resolution ; Superconductivity ; Tomography</subject><ispartof>Advanced functional materials, 2024-06, Vol.34 (23), p.n/a</ispartof><rights>2024 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3571-a1e204231e07f3ca1ebfc42c8fca1f9fc59a139db206f9d0cd203206b58f6fdd3</citedby><cites>FETCH-LOGICAL-c3571-a1e204231e07f3ca1ebfc42c8fca1f9fc59a139db206f9d0cd203206b58f6fdd3</cites><orcidid>0000-0002-8623-6705</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202314011$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202314011$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>He, Jiali</creatorcontrib><creatorcontrib>Zahn, Manuel</creatorcontrib><creatorcontrib>Ushakov, Ivan N.</creatorcontrib><creatorcontrib>Richarz, Leonie</creatorcontrib><creatorcontrib>Ludacka, Ursula</creatorcontrib><creatorcontrib>Roede, Erik D.</creatorcontrib><creatorcontrib>Yan, Zewu</creatorcontrib><creatorcontrib>Bourret, Edith</creatorcontrib><creatorcontrib>Kézsmárki, István</creatorcontrib><creatorcontrib>Catalan, Gustau</creatorcontrib><creatorcontrib>Meier, Dennis</creatorcontrib><title>Non‐Destructive Tomographic Nanoscale Imaging of Ferroelectric Domain Walls</title><title>Advanced functional materials</title><description>Extraordinary physical properties arise at polar interfaces in oxide materials, including the emergence of 2D electron gases, sheet‐superconductivity, and multiferroicity. A special type of polar interface is ferroelectric domain walls, where electronic reconstruction phenomena can be driven by bound charges. Great progress has been achieved in the characterization of such domain walls and, over the last decade, their potential for next‐generation nanotechnology has become clear. Established tomography techniques, however, are either destructive or offer insufficient spatial resolution, creating a pressing demand for 3D imaging compatible with future fabrication processes. Here, non‐destructive tomographic imaging of ferroelectric domain walls is demonstrated using secondary electrons. Utilizing conventional scanning electron microscopy (SEM), the position, orientation, and charge state of hidden domain walls are reconstructed at distances up to several hundreds of nanometers away from the surface. A mathematical model is derived that links the SEM intensity variations at the surface to the local domain wall properties, enabling non‐destructive tomography with good noise tolerance on the timescale of seconds. The SEM‐based approach facilitates high‐throughput screening of materials with functional domain walls and domain‐wall‐based devices, which is essential for monitoring during the production of device architectures and quality control in real‐time.
Scanning electron microscopy is applied for tomographic imaging of ferroelectric domain walls. The position, orientation, and charge state of otherwise hidden walls are reconstructed, and a model is derived linking measured intensity variations to local domain‐wall properties. The approach facilitates high‐throughput screening of materials with functional domain walls, enabling monitoring during the production of devices and quality control in real‐time.</description><subject>3D imaging</subject><subject>conductive atomic force microscopy</subject><subject>correlated microscopy</subject><subject>Domain walls</subject><subject>ferroelectric</subject><subject>Ferroelectric domains</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Image reconstruction</subject><subject>Noise tolerance</subject><subject>Physical properties</subject><subject>Quality control</subject><subject>Scanning electron microscopy</subject><subject>secondary electron microscopy</subject><subject>Spatial resolution</subject><subject>Superconductivity</subject><subject>Tomography</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkM1OwzAQhC0EEqVw5RyJc8qunebnWLUUKrXlUgQ3y3HskiqJg92CeuMReEaeBFdB5chpZ6VvdkdDyDXCAAHorSh0PaBAGUaAeEJ6GGMcMqDp6VHjyzm5cG4DgEnCoh5ZLE3z_fk1UW5rd3JbvqtgZWqztqJ9LWWwFI1xUlQqmNViXTbrwOhgqqw1qlJyaz0yMbUom-BZVJW7JGdaVE5d_c4-eZrercYP4fzxfjYezUPJhgmGAhWFyAdVkGgm_ZprGVGZaq91puUwE8iyIqcQ66wAWVBgXufDVMe6KFif3HR3W2vedj4735idbfxLziCOUkojGntq0FHSGues0ry1ZS3sniPwQ2X8UBk_VuYNWWf4KCu1_4fmo8l08ef9Aa7scVE</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>He, Jiali</creator><creator>Zahn, Manuel</creator><creator>Ushakov, Ivan N.</creator><creator>Richarz, Leonie</creator><creator>Ludacka, Ursula</creator><creator>Roede, Erik D.</creator><creator>Yan, Zewu</creator><creator>Bourret, Edith</creator><creator>Kézsmárki, István</creator><creator>Catalan, Gustau</creator><creator>Meier, Dennis</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8623-6705</orcidid></search><sort><creationdate>20240601</creationdate><title>Non‐Destructive Tomographic Nanoscale Imaging of Ferroelectric Domain Walls</title><author>He, Jiali ; Zahn, Manuel ; Ushakov, Ivan N. ; Richarz, Leonie ; Ludacka, Ursula ; Roede, Erik D. ; Yan, Zewu ; Bourret, Edith ; Kézsmárki, István ; Catalan, Gustau ; Meier, Dennis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3571-a1e204231e07f3ca1ebfc42c8fca1f9fc59a139db206f9d0cd203206b58f6fdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D imaging</topic><topic>conductive atomic force microscopy</topic><topic>correlated microscopy</topic><topic>Domain walls</topic><topic>ferroelectric</topic><topic>Ferroelectric domains</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Image reconstruction</topic><topic>Noise tolerance</topic><topic>Physical properties</topic><topic>Quality control</topic><topic>Scanning electron microscopy</topic><topic>secondary electron microscopy</topic><topic>Spatial resolution</topic><topic>Superconductivity</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Jiali</creatorcontrib><creatorcontrib>Zahn, Manuel</creatorcontrib><creatorcontrib>Ushakov, Ivan N.</creatorcontrib><creatorcontrib>Richarz, Leonie</creatorcontrib><creatorcontrib>Ludacka, Ursula</creatorcontrib><creatorcontrib>Roede, Erik D.</creatorcontrib><creatorcontrib>Yan, Zewu</creatorcontrib><creatorcontrib>Bourret, Edith</creatorcontrib><creatorcontrib>Kézsmárki, István</creatorcontrib><creatorcontrib>Catalan, Gustau</creatorcontrib><creatorcontrib>Meier, Dennis</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Jiali</au><au>Zahn, Manuel</au><au>Ushakov, Ivan N.</au><au>Richarz, Leonie</au><au>Ludacka, Ursula</au><au>Roede, Erik D.</au><au>Yan, Zewu</au><au>Bourret, Edith</au><au>Kézsmárki, István</au><au>Catalan, Gustau</au><au>Meier, Dennis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non‐Destructive Tomographic Nanoscale Imaging of Ferroelectric Domain Walls</atitle><jtitle>Advanced functional materials</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>34</volume><issue>23</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Extraordinary physical properties arise at polar interfaces in oxide materials, including the emergence of 2D electron gases, sheet‐superconductivity, and multiferroicity. A special type of polar interface is ferroelectric domain walls, where electronic reconstruction phenomena can be driven by bound charges. Great progress has been achieved in the characterization of such domain walls and, over the last decade, their potential for next‐generation nanotechnology has become clear. Established tomography techniques, however, are either destructive or offer insufficient spatial resolution, creating a pressing demand for 3D imaging compatible with future fabrication processes. Here, non‐destructive tomographic imaging of ferroelectric domain walls is demonstrated using secondary electrons. Utilizing conventional scanning electron microscopy (SEM), the position, orientation, and charge state of hidden domain walls are reconstructed at distances up to several hundreds of nanometers away from the surface. A mathematical model is derived that links the SEM intensity variations at the surface to the local domain wall properties, enabling non‐destructive tomography with good noise tolerance on the timescale of seconds. The SEM‐based approach facilitates high‐throughput screening of materials with functional domain walls and domain‐wall‐based devices, which is essential for monitoring during the production of device architectures and quality control in real‐time.
Scanning electron microscopy is applied for tomographic imaging of ferroelectric domain walls. The position, orientation, and charge state of otherwise hidden walls are reconstructed, and a model is derived linking measured intensity variations to local domain‐wall properties. The approach facilitates high‐throughput screening of materials with functional domain walls, enabling monitoring during the production of devices and quality control in real‐time.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202314011</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8623-6705</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2024-06, Vol.34 (23), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_3064822426 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | 3D imaging conductive atomic force microscopy correlated microscopy Domain walls ferroelectric Ferroelectric domains Ferroelectric materials Ferroelectricity Image reconstruction Noise tolerance Physical properties Quality control Scanning electron microscopy secondary electron microscopy Spatial resolution Superconductivity Tomography |
title | Non‐Destructive Tomographic Nanoscale Imaging of Ferroelectric Domain Walls |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T23%3A20%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non%E2%80%90Destructive%20Tomographic%20Nanoscale%20Imaging%20of%20Ferroelectric%20Domain%20Walls&rft.jtitle=Advanced%20functional%20materials&rft.au=He,%20Jiali&rft.date=2024-06-01&rft.volume=34&rft.issue=23&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202314011&rft_dat=%3Cproquest_cross%3E3064822426%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064822426&rft_id=info:pmid/&rfr_iscdi=true |