Non‐Destructive Tomographic Nanoscale Imaging of Ferroelectric Domain Walls

Extraordinary physical properties arise at polar interfaces in oxide materials, including the emergence of 2D electron gases, sheet‐superconductivity, and multiferroicity. A special type of polar interface is ferroelectric domain walls, where electronic reconstruction phenomena can be driven by boun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-06, Vol.34 (23), p.n/a
Hauptverfasser: He, Jiali, Zahn, Manuel, Ushakov, Ivan N., Richarz, Leonie, Ludacka, Ursula, Roede, Erik D., Yan, Zewu, Bourret, Edith, Kézsmárki, István, Catalan, Gustau, Meier, Dennis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 23
container_start_page
container_title Advanced functional materials
container_volume 34
creator He, Jiali
Zahn, Manuel
Ushakov, Ivan N.
Richarz, Leonie
Ludacka, Ursula
Roede, Erik D.
Yan, Zewu
Bourret, Edith
Kézsmárki, István
Catalan, Gustau
Meier, Dennis
description Extraordinary physical properties arise at polar interfaces in oxide materials, including the emergence of 2D electron gases, sheet‐superconductivity, and multiferroicity. A special type of polar interface is ferroelectric domain walls, where electronic reconstruction phenomena can be driven by bound charges. Great progress has been achieved in the characterization of such domain walls and, over the last decade, their potential for next‐generation nanotechnology has become clear. Established tomography techniques, however, are either destructive or offer insufficient spatial resolution, creating a pressing demand for 3D imaging compatible with future fabrication processes. Here, non‐destructive tomographic imaging of ferroelectric domain walls is demonstrated using secondary electrons. Utilizing conventional scanning electron microscopy (SEM), the position, orientation, and charge state of hidden domain walls are reconstructed at distances up to several hundreds of nanometers away from the surface. A mathematical model is derived that links the SEM intensity variations at the surface to the local domain wall properties, enabling non‐destructive tomography with good noise tolerance on the timescale of seconds. The SEM‐based approach facilitates high‐throughput screening of materials with functional domain walls and domain‐wall‐based devices, which is essential for monitoring during the production of device architectures and quality control in real‐time. Scanning electron microscopy is applied for tomographic imaging of ferroelectric domain walls. The position, orientation, and charge state of otherwise hidden walls are reconstructed, and a model is derived linking measured intensity variations to local domain‐wall properties. The approach facilitates high‐throughput screening of materials with functional domain walls, enabling monitoring during the production of devices and quality control in real‐time.
doi_str_mv 10.1002/adfm.202314011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3064822426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064822426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3571-a1e204231e07f3ca1ebfc42c8fca1f9fc59a139db206f9d0cd203206b58f6fdd3</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqVw5RyJc8qunebnWLUUKrXlUgQ3y3HskiqJg92CeuMReEaeBFdB5chpZ6VvdkdDyDXCAAHorSh0PaBAGUaAeEJ6GGMcMqDp6VHjyzm5cG4DgEnCoh5ZLE3z_fk1UW5rd3JbvqtgZWqztqJ9LWWwFI1xUlQqmNViXTbrwOhgqqw1qlJyaz0yMbUom-BZVJW7JGdaVE5d_c4-eZrercYP4fzxfjYezUPJhgmGAhWFyAdVkGgm_ZprGVGZaq91puUwE8iyIqcQ66wAWVBgXufDVMe6KFif3HR3W2vedj4735idbfxLziCOUkojGntq0FHSGues0ry1ZS3sniPwQ2X8UBk_VuYNWWf4KCu1_4fmo8l08ef9Aa7scVE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064822426</pqid></control><display><type>article</type><title>Non‐Destructive Tomographic Nanoscale Imaging of Ferroelectric Domain Walls</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>He, Jiali ; Zahn, Manuel ; Ushakov, Ivan N. ; Richarz, Leonie ; Ludacka, Ursula ; Roede, Erik D. ; Yan, Zewu ; Bourret, Edith ; Kézsmárki, István ; Catalan, Gustau ; Meier, Dennis</creator><creatorcontrib>He, Jiali ; Zahn, Manuel ; Ushakov, Ivan N. ; Richarz, Leonie ; Ludacka, Ursula ; Roede, Erik D. ; Yan, Zewu ; Bourret, Edith ; Kézsmárki, István ; Catalan, Gustau ; Meier, Dennis</creatorcontrib><description>Extraordinary physical properties arise at polar interfaces in oxide materials, including the emergence of 2D electron gases, sheet‐superconductivity, and multiferroicity. A special type of polar interface is ferroelectric domain walls, where electronic reconstruction phenomena can be driven by bound charges. Great progress has been achieved in the characterization of such domain walls and, over the last decade, their potential for next‐generation nanotechnology has become clear. Established tomography techniques, however, are either destructive or offer insufficient spatial resolution, creating a pressing demand for 3D imaging compatible with future fabrication processes. Here, non‐destructive tomographic imaging of ferroelectric domain walls is demonstrated using secondary electrons. Utilizing conventional scanning electron microscopy (SEM), the position, orientation, and charge state of hidden domain walls are reconstructed at distances up to several hundreds of nanometers away from the surface. A mathematical model is derived that links the SEM intensity variations at the surface to the local domain wall properties, enabling non‐destructive tomography with good noise tolerance on the timescale of seconds. The SEM‐based approach facilitates high‐throughput screening of materials with functional domain walls and domain‐wall‐based devices, which is essential for monitoring during the production of device architectures and quality control in real‐time. Scanning electron microscopy is applied for tomographic imaging of ferroelectric domain walls. The position, orientation, and charge state of otherwise hidden walls are reconstructed, and a model is derived linking measured intensity variations to local domain‐wall properties. The approach facilitates high‐throughput screening of materials with functional domain walls, enabling monitoring during the production of devices and quality control in real‐time.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202314011</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>3D imaging ; conductive atomic force microscopy ; correlated microscopy ; Domain walls ; ferroelectric ; Ferroelectric domains ; Ferroelectric materials ; Ferroelectricity ; Image reconstruction ; Noise tolerance ; Physical properties ; Quality control ; Scanning electron microscopy ; secondary electron microscopy ; Spatial resolution ; Superconductivity ; Tomography</subject><ispartof>Advanced functional materials, 2024-06, Vol.34 (23), p.n/a</ispartof><rights>2024 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3571-a1e204231e07f3ca1ebfc42c8fca1f9fc59a139db206f9d0cd203206b58f6fdd3</citedby><cites>FETCH-LOGICAL-c3571-a1e204231e07f3ca1ebfc42c8fca1f9fc59a139db206f9d0cd203206b58f6fdd3</cites><orcidid>0000-0002-8623-6705</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202314011$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202314011$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>He, Jiali</creatorcontrib><creatorcontrib>Zahn, Manuel</creatorcontrib><creatorcontrib>Ushakov, Ivan N.</creatorcontrib><creatorcontrib>Richarz, Leonie</creatorcontrib><creatorcontrib>Ludacka, Ursula</creatorcontrib><creatorcontrib>Roede, Erik D.</creatorcontrib><creatorcontrib>Yan, Zewu</creatorcontrib><creatorcontrib>Bourret, Edith</creatorcontrib><creatorcontrib>Kézsmárki, István</creatorcontrib><creatorcontrib>Catalan, Gustau</creatorcontrib><creatorcontrib>Meier, Dennis</creatorcontrib><title>Non‐Destructive Tomographic Nanoscale Imaging of Ferroelectric Domain Walls</title><title>Advanced functional materials</title><description>Extraordinary physical properties arise at polar interfaces in oxide materials, including the emergence of 2D electron gases, sheet‐superconductivity, and multiferroicity. A special type of polar interface is ferroelectric domain walls, where electronic reconstruction phenomena can be driven by bound charges. Great progress has been achieved in the characterization of such domain walls and, over the last decade, their potential for next‐generation nanotechnology has become clear. Established tomography techniques, however, are either destructive or offer insufficient spatial resolution, creating a pressing demand for 3D imaging compatible with future fabrication processes. Here, non‐destructive tomographic imaging of ferroelectric domain walls is demonstrated using secondary electrons. Utilizing conventional scanning electron microscopy (SEM), the position, orientation, and charge state of hidden domain walls are reconstructed at distances up to several hundreds of nanometers away from the surface. A mathematical model is derived that links the SEM intensity variations at the surface to the local domain wall properties, enabling non‐destructive tomography with good noise tolerance on the timescale of seconds. The SEM‐based approach facilitates high‐throughput screening of materials with functional domain walls and domain‐wall‐based devices, which is essential for monitoring during the production of device architectures and quality control in real‐time. Scanning electron microscopy is applied for tomographic imaging of ferroelectric domain walls. The position, orientation, and charge state of otherwise hidden walls are reconstructed, and a model is derived linking measured intensity variations to local domain‐wall properties. The approach facilitates high‐throughput screening of materials with functional domain walls, enabling monitoring during the production of devices and quality control in real‐time.</description><subject>3D imaging</subject><subject>conductive atomic force microscopy</subject><subject>correlated microscopy</subject><subject>Domain walls</subject><subject>ferroelectric</subject><subject>Ferroelectric domains</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Image reconstruction</subject><subject>Noise tolerance</subject><subject>Physical properties</subject><subject>Quality control</subject><subject>Scanning electron microscopy</subject><subject>secondary electron microscopy</subject><subject>Spatial resolution</subject><subject>Superconductivity</subject><subject>Tomography</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkM1OwzAQhC0EEqVw5RyJc8qunebnWLUUKrXlUgQ3y3HskiqJg92CeuMReEaeBFdB5chpZ6VvdkdDyDXCAAHorSh0PaBAGUaAeEJ6GGMcMqDp6VHjyzm5cG4DgEnCoh5ZLE3z_fk1UW5rd3JbvqtgZWqztqJ9LWWwFI1xUlQqmNViXTbrwOhgqqw1qlJyaz0yMbUom-BZVJW7JGdaVE5d_c4-eZrercYP4fzxfjYezUPJhgmGAhWFyAdVkGgm_ZprGVGZaq91puUwE8iyIqcQ66wAWVBgXufDVMe6KFif3HR3W2vedj4735idbfxLziCOUkojGntq0FHSGues0ry1ZS3sniPwQ2X8UBk_VuYNWWf4KCu1_4fmo8l08ef9Aa7scVE</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>He, Jiali</creator><creator>Zahn, Manuel</creator><creator>Ushakov, Ivan N.</creator><creator>Richarz, Leonie</creator><creator>Ludacka, Ursula</creator><creator>Roede, Erik D.</creator><creator>Yan, Zewu</creator><creator>Bourret, Edith</creator><creator>Kézsmárki, István</creator><creator>Catalan, Gustau</creator><creator>Meier, Dennis</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8623-6705</orcidid></search><sort><creationdate>20240601</creationdate><title>Non‐Destructive Tomographic Nanoscale Imaging of Ferroelectric Domain Walls</title><author>He, Jiali ; Zahn, Manuel ; Ushakov, Ivan N. ; Richarz, Leonie ; Ludacka, Ursula ; Roede, Erik D. ; Yan, Zewu ; Bourret, Edith ; Kézsmárki, István ; Catalan, Gustau ; Meier, Dennis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3571-a1e204231e07f3ca1ebfc42c8fca1f9fc59a139db206f9d0cd203206b58f6fdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D imaging</topic><topic>conductive atomic force microscopy</topic><topic>correlated microscopy</topic><topic>Domain walls</topic><topic>ferroelectric</topic><topic>Ferroelectric domains</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Image reconstruction</topic><topic>Noise tolerance</topic><topic>Physical properties</topic><topic>Quality control</topic><topic>Scanning electron microscopy</topic><topic>secondary electron microscopy</topic><topic>Spatial resolution</topic><topic>Superconductivity</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Jiali</creatorcontrib><creatorcontrib>Zahn, Manuel</creatorcontrib><creatorcontrib>Ushakov, Ivan N.</creatorcontrib><creatorcontrib>Richarz, Leonie</creatorcontrib><creatorcontrib>Ludacka, Ursula</creatorcontrib><creatorcontrib>Roede, Erik D.</creatorcontrib><creatorcontrib>Yan, Zewu</creatorcontrib><creatorcontrib>Bourret, Edith</creatorcontrib><creatorcontrib>Kézsmárki, István</creatorcontrib><creatorcontrib>Catalan, Gustau</creatorcontrib><creatorcontrib>Meier, Dennis</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Jiali</au><au>Zahn, Manuel</au><au>Ushakov, Ivan N.</au><au>Richarz, Leonie</au><au>Ludacka, Ursula</au><au>Roede, Erik D.</au><au>Yan, Zewu</au><au>Bourret, Edith</au><au>Kézsmárki, István</au><au>Catalan, Gustau</au><au>Meier, Dennis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non‐Destructive Tomographic Nanoscale Imaging of Ferroelectric Domain Walls</atitle><jtitle>Advanced functional materials</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>34</volume><issue>23</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Extraordinary physical properties arise at polar interfaces in oxide materials, including the emergence of 2D electron gases, sheet‐superconductivity, and multiferroicity. A special type of polar interface is ferroelectric domain walls, where electronic reconstruction phenomena can be driven by bound charges. Great progress has been achieved in the characterization of such domain walls and, over the last decade, their potential for next‐generation nanotechnology has become clear. Established tomography techniques, however, are either destructive or offer insufficient spatial resolution, creating a pressing demand for 3D imaging compatible with future fabrication processes. Here, non‐destructive tomographic imaging of ferroelectric domain walls is demonstrated using secondary electrons. Utilizing conventional scanning electron microscopy (SEM), the position, orientation, and charge state of hidden domain walls are reconstructed at distances up to several hundreds of nanometers away from the surface. A mathematical model is derived that links the SEM intensity variations at the surface to the local domain wall properties, enabling non‐destructive tomography with good noise tolerance on the timescale of seconds. The SEM‐based approach facilitates high‐throughput screening of materials with functional domain walls and domain‐wall‐based devices, which is essential for monitoring during the production of device architectures and quality control in real‐time. Scanning electron microscopy is applied for tomographic imaging of ferroelectric domain walls. The position, orientation, and charge state of otherwise hidden walls are reconstructed, and a model is derived linking measured intensity variations to local domain‐wall properties. The approach facilitates high‐throughput screening of materials with functional domain walls, enabling monitoring during the production of devices and quality control in real‐time.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202314011</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8623-6705</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-06, Vol.34 (23), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3064822426
source Wiley Online Library - AutoHoldings Journals
subjects 3D imaging
conductive atomic force microscopy
correlated microscopy
Domain walls
ferroelectric
Ferroelectric domains
Ferroelectric materials
Ferroelectricity
Image reconstruction
Noise tolerance
Physical properties
Quality control
Scanning electron microscopy
secondary electron microscopy
Spatial resolution
Superconductivity
Tomography
title Non‐Destructive Tomographic Nanoscale Imaging of Ferroelectric Domain Walls
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T23%3A20%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non%E2%80%90Destructive%20Tomographic%20Nanoscale%20Imaging%20of%20Ferroelectric%20Domain%20Walls&rft.jtitle=Advanced%20functional%20materials&rft.au=He,%20Jiali&rft.date=2024-06-01&rft.volume=34&rft.issue=23&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202314011&rft_dat=%3Cproquest_cross%3E3064822426%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064822426&rft_id=info:pmid/&rfr_iscdi=true