On the triviality of the unramified Iwasawa modules of the maximal multiple \(\mathbb{Z}_p\)-extensions
For a number field \(k\) and an odd prime number \(p\), we consider the maximal multiple \(\mathbb{Z}_p\)-extension \(\tilde{k}\) of \(k\) and the unramified Iwasawa module \(X(\tilde{k})\), which is the Galois group of the maximal unramified abelian \(p\)-extension over \(\tilde{k}\). In the presen...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-09 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a number field \(k\) and an odd prime number \(p\), we consider the maximal multiple \(\mathbb{Z}_p\)-extension \(\tilde{k}\) of \(k\) and the unramified Iwasawa module \(X(\tilde{k})\), which is the Galois group of the maximal unramified abelian \(p\)-extension over \(\tilde{k}\). In the present article, we discus classifying CM-fields \(k\) which are decomposed completely at \(p\) such that \(X(\tilde{k})=0\). |
---|---|
ISSN: | 2331-8422 |