Data-Driven Approaches for Thrust Prediction in Underwater Flapping Fin Propulsion Systems

Flapping-fin underwater vehicle propulsion systems provide an alternative to propeller-driven systems in situations that require involve a constrained environment or require high maneuverability. Testing new configurations through experiments or high-fidelity simulations is an expensive process, slo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-06
Hauptverfasser: Lee, Julian, Viswanath, Kamal, Sharma, Alisha, Geder, Jason, Ramamurti, Ravi, Pruessner, Marius D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Lee, Julian
Viswanath, Kamal
Sharma, Alisha
Geder, Jason
Ramamurti, Ravi
Pruessner, Marius D
description Flapping-fin underwater vehicle propulsion systems provide an alternative to propeller-driven systems in situations that require involve a constrained environment or require high maneuverability. Testing new configurations through experiments or high-fidelity simulations is an expensive process, slowing development of new systems. This is especially true when introducing new fin geometries. In this work, we propose machine learning approaches for thrust prediction given the system's fin geometries and kinematics. We introduce data-efficient fin shape parameterization strategies that enable our network to predict thrust profiles for unseen fin geometries given limited fin shapes in input data. In addition to faster development of systems, generalizable surrogate models offer fast, accurate predictions that could be used on an unmanned underwater vehicle control system.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3064732562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064732562</sourcerecordid><originalsourceid>FETCH-proquest_journals_30647325623</originalsourceid><addsrcrecordid>eNqNjcsKwjAUBYMgWLT_EHBdqEkfbsVaXBbUjZsS2tSm1CTemyj-vRX8AFcHZgbOjASM8020TRhbkBBxiOOYZTlLUx6QayGciApQT6npzlowoukl0s4APffg0dEKZKsap4ymStOLbiW8hJNAy1FYq_SNlhOvwFg_4rc6vdHJO67IvBMjyvC3S7IuD-f9MZpOHl6iqwfjQU-q5nGW5JylGeP_VR820kLb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064732562</pqid></control><display><type>article</type><title>Data-Driven Approaches for Thrust Prediction in Underwater Flapping Fin Propulsion Systems</title><source>Free E- Journals</source><creator>Lee, Julian ; Viswanath, Kamal ; Sharma, Alisha ; Geder, Jason ; Ramamurti, Ravi ; Pruessner, Marius D</creator><creatorcontrib>Lee, Julian ; Viswanath, Kamal ; Sharma, Alisha ; Geder, Jason ; Ramamurti, Ravi ; Pruessner, Marius D</creatorcontrib><description>Flapping-fin underwater vehicle propulsion systems provide an alternative to propeller-driven systems in situations that require involve a constrained environment or require high maneuverability. Testing new configurations through experiments or high-fidelity simulations is an expensive process, slowing development of new systems. This is especially true when introducing new fin geometries. In this work, we propose machine learning approaches for thrust prediction given the system's fin geometries and kinematics. We introduce data-efficient fin shape parameterization strategies that enable our network to predict thrust profiles for unseen fin geometries given limited fin shapes in input data. In addition to faster development of systems, generalizable surrogate models offer fast, accurate predictions that could be used on an unmanned underwater vehicle control system.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Autonomous underwater vehicles ; Flapping ; Kinematics ; Machine learning ; Parameterization ; Propulsion systems</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Lee, Julian</creatorcontrib><creatorcontrib>Viswanath, Kamal</creatorcontrib><creatorcontrib>Sharma, Alisha</creatorcontrib><creatorcontrib>Geder, Jason</creatorcontrib><creatorcontrib>Ramamurti, Ravi</creatorcontrib><creatorcontrib>Pruessner, Marius D</creatorcontrib><title>Data-Driven Approaches for Thrust Prediction in Underwater Flapping Fin Propulsion Systems</title><title>arXiv.org</title><description>Flapping-fin underwater vehicle propulsion systems provide an alternative to propeller-driven systems in situations that require involve a constrained environment or require high maneuverability. Testing new configurations through experiments or high-fidelity simulations is an expensive process, slowing development of new systems. This is especially true when introducing new fin geometries. In this work, we propose machine learning approaches for thrust prediction given the system's fin geometries and kinematics. We introduce data-efficient fin shape parameterization strategies that enable our network to predict thrust profiles for unseen fin geometries given limited fin shapes in input data. In addition to faster development of systems, generalizable surrogate models offer fast, accurate predictions that could be used on an unmanned underwater vehicle control system.</description><subject>Autonomous underwater vehicles</subject><subject>Flapping</subject><subject>Kinematics</subject><subject>Machine learning</subject><subject>Parameterization</subject><subject>Propulsion systems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjcsKwjAUBYMgWLT_EHBdqEkfbsVaXBbUjZsS2tSm1CTemyj-vRX8AFcHZgbOjASM8020TRhbkBBxiOOYZTlLUx6QayGciApQT6npzlowoukl0s4APffg0dEKZKsap4ymStOLbiW8hJNAy1FYq_SNlhOvwFg_4rc6vdHJO67IvBMjyvC3S7IuD-f9MZpOHl6iqwfjQU-q5nGW5JylGeP_VR820kLb</recordid><startdate>20240604</startdate><enddate>20240604</enddate><creator>Lee, Julian</creator><creator>Viswanath, Kamal</creator><creator>Sharma, Alisha</creator><creator>Geder, Jason</creator><creator>Ramamurti, Ravi</creator><creator>Pruessner, Marius D</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240604</creationdate><title>Data-Driven Approaches for Thrust Prediction in Underwater Flapping Fin Propulsion Systems</title><author>Lee, Julian ; Viswanath, Kamal ; Sharma, Alisha ; Geder, Jason ; Ramamurti, Ravi ; Pruessner, Marius D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30647325623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Autonomous underwater vehicles</topic><topic>Flapping</topic><topic>Kinematics</topic><topic>Machine learning</topic><topic>Parameterization</topic><topic>Propulsion systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Lee, Julian</creatorcontrib><creatorcontrib>Viswanath, Kamal</creatorcontrib><creatorcontrib>Sharma, Alisha</creatorcontrib><creatorcontrib>Geder, Jason</creatorcontrib><creatorcontrib>Ramamurti, Ravi</creatorcontrib><creatorcontrib>Pruessner, Marius D</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Julian</au><au>Viswanath, Kamal</au><au>Sharma, Alisha</au><au>Geder, Jason</au><au>Ramamurti, Ravi</au><au>Pruessner, Marius D</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Data-Driven Approaches for Thrust Prediction in Underwater Flapping Fin Propulsion Systems</atitle><jtitle>arXiv.org</jtitle><date>2024-06-04</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Flapping-fin underwater vehicle propulsion systems provide an alternative to propeller-driven systems in situations that require involve a constrained environment or require high maneuverability. Testing new configurations through experiments or high-fidelity simulations is an expensive process, slowing development of new systems. This is especially true when introducing new fin geometries. In this work, we propose machine learning approaches for thrust prediction given the system's fin geometries and kinematics. We introduce data-efficient fin shape parameterization strategies that enable our network to predict thrust profiles for unseen fin geometries given limited fin shapes in input data. In addition to faster development of systems, generalizable surrogate models offer fast, accurate predictions that could be used on an unmanned underwater vehicle control system.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_3064732562
source Free E- Journals
subjects Autonomous underwater vehicles
Flapping
Kinematics
Machine learning
Parameterization
Propulsion systems
title Data-Driven Approaches for Thrust Prediction in Underwater Flapping Fin Propulsion Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A21%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Data-Driven%20Approaches%20for%20Thrust%20Prediction%20in%20Underwater%20Flapping%20Fin%20Propulsion%20Systems&rft.jtitle=arXiv.org&rft.au=Lee,%20Julian&rft.date=2024-06-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3064732562%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064732562&rft_id=info:pmid/&rfr_iscdi=true