Data-Driven Approaches for Thrust Prediction in Underwater Flapping Fin Propulsion Systems
Flapping-fin underwater vehicle propulsion systems provide an alternative to propeller-driven systems in situations that require involve a constrained environment or require high maneuverability. Testing new configurations through experiments or high-fidelity simulations is an expensive process, slo...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-06 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Lee, Julian Viswanath, Kamal Sharma, Alisha Geder, Jason Ramamurti, Ravi Pruessner, Marius D |
description | Flapping-fin underwater vehicle propulsion systems provide an alternative to propeller-driven systems in situations that require involve a constrained environment or require high maneuverability. Testing new configurations through experiments or high-fidelity simulations is an expensive process, slowing development of new systems. This is especially true when introducing new fin geometries. In this work, we propose machine learning approaches for thrust prediction given the system's fin geometries and kinematics. We introduce data-efficient fin shape parameterization strategies that enable our network to predict thrust profiles for unseen fin geometries given limited fin shapes in input data. In addition to faster development of systems, generalizable surrogate models offer fast, accurate predictions that could be used on an unmanned underwater vehicle control system. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3064732562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064732562</sourcerecordid><originalsourceid>FETCH-proquest_journals_30647325623</originalsourceid><addsrcrecordid>eNqNjcsKwjAUBYMgWLT_EHBdqEkfbsVaXBbUjZsS2tSm1CTemyj-vRX8AFcHZgbOjASM8020TRhbkBBxiOOYZTlLUx6QayGciApQT6npzlowoukl0s4APffg0dEKZKsap4ymStOLbiW8hJNAy1FYq_SNlhOvwFg_4rc6vdHJO67IvBMjyvC3S7IuD-f9MZpOHl6iqwfjQU-q5nGW5JylGeP_VR820kLb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064732562</pqid></control><display><type>article</type><title>Data-Driven Approaches for Thrust Prediction in Underwater Flapping Fin Propulsion Systems</title><source>Free E- Journals</source><creator>Lee, Julian ; Viswanath, Kamal ; Sharma, Alisha ; Geder, Jason ; Ramamurti, Ravi ; Pruessner, Marius D</creator><creatorcontrib>Lee, Julian ; Viswanath, Kamal ; Sharma, Alisha ; Geder, Jason ; Ramamurti, Ravi ; Pruessner, Marius D</creatorcontrib><description>Flapping-fin underwater vehicle propulsion systems provide an alternative to propeller-driven systems in situations that require involve a constrained environment or require high maneuverability. Testing new configurations through experiments or high-fidelity simulations is an expensive process, slowing development of new systems. This is especially true when introducing new fin geometries. In this work, we propose machine learning approaches for thrust prediction given the system's fin geometries and kinematics. We introduce data-efficient fin shape parameterization strategies that enable our network to predict thrust profiles for unseen fin geometries given limited fin shapes in input data. In addition to faster development of systems, generalizable surrogate models offer fast, accurate predictions that could be used on an unmanned underwater vehicle control system.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Autonomous underwater vehicles ; Flapping ; Kinematics ; Machine learning ; Parameterization ; Propulsion systems</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Lee, Julian</creatorcontrib><creatorcontrib>Viswanath, Kamal</creatorcontrib><creatorcontrib>Sharma, Alisha</creatorcontrib><creatorcontrib>Geder, Jason</creatorcontrib><creatorcontrib>Ramamurti, Ravi</creatorcontrib><creatorcontrib>Pruessner, Marius D</creatorcontrib><title>Data-Driven Approaches for Thrust Prediction in Underwater Flapping Fin Propulsion Systems</title><title>arXiv.org</title><description>Flapping-fin underwater vehicle propulsion systems provide an alternative to propeller-driven systems in situations that require involve a constrained environment or require high maneuverability. Testing new configurations through experiments or high-fidelity simulations is an expensive process, slowing development of new systems. This is especially true when introducing new fin geometries. In this work, we propose machine learning approaches for thrust prediction given the system's fin geometries and kinematics. We introduce data-efficient fin shape parameterization strategies that enable our network to predict thrust profiles for unseen fin geometries given limited fin shapes in input data. In addition to faster development of systems, generalizable surrogate models offer fast, accurate predictions that could be used on an unmanned underwater vehicle control system.</description><subject>Autonomous underwater vehicles</subject><subject>Flapping</subject><subject>Kinematics</subject><subject>Machine learning</subject><subject>Parameterization</subject><subject>Propulsion systems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjcsKwjAUBYMgWLT_EHBdqEkfbsVaXBbUjZsS2tSm1CTemyj-vRX8AFcHZgbOjASM8020TRhbkBBxiOOYZTlLUx6QayGciApQT6npzlowoukl0s4APffg0dEKZKsap4ymStOLbiW8hJNAy1FYq_SNlhOvwFg_4rc6vdHJO67IvBMjyvC3S7IuD-f9MZpOHl6iqwfjQU-q5nGW5JylGeP_VR820kLb</recordid><startdate>20240604</startdate><enddate>20240604</enddate><creator>Lee, Julian</creator><creator>Viswanath, Kamal</creator><creator>Sharma, Alisha</creator><creator>Geder, Jason</creator><creator>Ramamurti, Ravi</creator><creator>Pruessner, Marius D</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240604</creationdate><title>Data-Driven Approaches for Thrust Prediction in Underwater Flapping Fin Propulsion Systems</title><author>Lee, Julian ; Viswanath, Kamal ; Sharma, Alisha ; Geder, Jason ; Ramamurti, Ravi ; Pruessner, Marius D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30647325623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Autonomous underwater vehicles</topic><topic>Flapping</topic><topic>Kinematics</topic><topic>Machine learning</topic><topic>Parameterization</topic><topic>Propulsion systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Lee, Julian</creatorcontrib><creatorcontrib>Viswanath, Kamal</creatorcontrib><creatorcontrib>Sharma, Alisha</creatorcontrib><creatorcontrib>Geder, Jason</creatorcontrib><creatorcontrib>Ramamurti, Ravi</creatorcontrib><creatorcontrib>Pruessner, Marius D</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Julian</au><au>Viswanath, Kamal</au><au>Sharma, Alisha</au><au>Geder, Jason</au><au>Ramamurti, Ravi</au><au>Pruessner, Marius D</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Data-Driven Approaches for Thrust Prediction in Underwater Flapping Fin Propulsion Systems</atitle><jtitle>arXiv.org</jtitle><date>2024-06-04</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Flapping-fin underwater vehicle propulsion systems provide an alternative to propeller-driven systems in situations that require involve a constrained environment or require high maneuverability. Testing new configurations through experiments or high-fidelity simulations is an expensive process, slowing development of new systems. This is especially true when introducing new fin geometries. In this work, we propose machine learning approaches for thrust prediction given the system's fin geometries and kinematics. We introduce data-efficient fin shape parameterization strategies that enable our network to predict thrust profiles for unseen fin geometries given limited fin shapes in input data. In addition to faster development of systems, generalizable surrogate models offer fast, accurate predictions that could be used on an unmanned underwater vehicle control system.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3064732562 |
source | Free E- Journals |
subjects | Autonomous underwater vehicles Flapping Kinematics Machine learning Parameterization Propulsion systems |
title | Data-Driven Approaches for Thrust Prediction in Underwater Flapping Fin Propulsion Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A21%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Data-Driven%20Approaches%20for%20Thrust%20Prediction%20in%20Underwater%20Flapping%20Fin%20Propulsion%20Systems&rft.jtitle=arXiv.org&rft.au=Lee,%20Julian&rft.date=2024-06-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3064732562%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064732562&rft_id=info:pmid/&rfr_iscdi=true |