Tackling customer support through NLP

There is a high boom in consulting companies handling worldwide clients and customers with different services. Hence, there is a dire need of understanding the customer’s problems to make improvements in the company’s product or services. The company’s customer support hires many people in this rega...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sunil, Goli, Areefa, Pragathi, Kota, Rishitha, Koyyada, Kumar, Sambari Praveen, Dhandapani, Kothandaraman, Reddy, Rajasri
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2971
creator Sunil, Goli
Areefa
Pragathi, Kota
Rishitha, Koyyada
Kumar, Sambari Praveen
Dhandapani, Kothandaraman
Reddy, Rajasri
description There is a high boom in consulting companies handling worldwide clients and customers with different services. Hence, there is a dire need of understanding the customer’s problems to make improvements in the company’s product or services. The company’s customer support hires many people in this regard, but customer complaints are delayed. Therefore, tackling customer support by using an automation model with the help of NLP would be a suitable idea. In this paper, we proposed an efficient methodology of an ML model trained by various algorithms using NLP support with TF-IDF vectorizer and using word2vec. We got high accuracy of 90.5% with the Multiclass Logistic Regression model. Hence, this model can run in the backend of bank applications of customer support and help in classifying the context and right category of complaint such that it can be connected to the right customer agent who can tackle the problem.
doi_str_mv 10.1063/5.0196166
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3064718955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064718955</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-7e416e10c693d2b7a5df647ee30cd7078e51cf61d41f513f854f5a08e40ec6643</originalsourceid><addsrcrecordid>eNotkE1Lw0AURQdRMFYX_oOAuBFS38t8JUspVoWgLiq4G8bJTJvaZuLMZOG_N9KuLhcu58Ih5BphjiDoPZ8D1gKFOCEZco6FnMopyQBqVpSMfp6Tixi3AGUtZZWR25U237uuX-dmjMnvbcjjOAw-pDxtgh_Xm_y1eb8kZ07vor065ox8LB9Xi-eieXt6WTw0xYCUpkJahsIiGFHTtvySmrdOMGktBdNKkJXlaJzAlqHjSF3FmeMaKsvAGiEYnZGbA3cI_me0MamtH0M_XSoKEwmrmvNpdXdYRdMlnTrfqyF0ex1-FYL616C4Omqgfz5fTSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3064718955</pqid></control><display><type>conference_proceeding</type><title>Tackling customer support through NLP</title><source>AIP Journals Complete</source><creator>Sunil, Goli ; Areefa ; Pragathi, Kota ; Rishitha, Koyyada ; Kumar, Sambari Praveen ; Dhandapani, Kothandaraman ; Reddy, Rajasri</creator><contributor>Mahender, Kommabatla ; Reddy, I. Rajasri</contributor><creatorcontrib>Sunil, Goli ; Areefa ; Pragathi, Kota ; Rishitha, Koyyada ; Kumar, Sambari Praveen ; Dhandapani, Kothandaraman ; Reddy, Rajasri ; Mahender, Kommabatla ; Reddy, I. Rajasri</creatorcontrib><description>There is a high boom in consulting companies handling worldwide clients and customers with different services. Hence, there is a dire need of understanding the customer’s problems to make improvements in the company’s product or services. The company’s customer support hires many people in this regard, but customer complaints are delayed. Therefore, tackling customer support by using an automation model with the help of NLP would be a suitable idea. In this paper, we proposed an efficient methodology of an ML model trained by various algorithms using NLP support with TF-IDF vectorizer and using word2vec. We got high accuracy of 90.5% with the Multiclass Logistic Regression model. Hence, this model can run in the backend of bank applications of customer support and help in classifying the context and right category of complaint such that it can be connected to the right customer agent who can tackle the problem.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0196166</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Customer services ; Customers ; Regression models</subject><ispartof>AIP conference proceedings, 2024, Vol.2971 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0196166$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76353</link.rule.ids></links><search><contributor>Mahender, Kommabatla</contributor><contributor>Reddy, I. Rajasri</contributor><creatorcontrib>Sunil, Goli</creatorcontrib><creatorcontrib>Areefa</creatorcontrib><creatorcontrib>Pragathi, Kota</creatorcontrib><creatorcontrib>Rishitha, Koyyada</creatorcontrib><creatorcontrib>Kumar, Sambari Praveen</creatorcontrib><creatorcontrib>Dhandapani, Kothandaraman</creatorcontrib><creatorcontrib>Reddy, Rajasri</creatorcontrib><title>Tackling customer support through NLP</title><title>AIP conference proceedings</title><description>There is a high boom in consulting companies handling worldwide clients and customers with different services. Hence, there is a dire need of understanding the customer’s problems to make improvements in the company’s product or services. The company’s customer support hires many people in this regard, but customer complaints are delayed. Therefore, tackling customer support by using an automation model with the help of NLP would be a suitable idea. In this paper, we proposed an efficient methodology of an ML model trained by various algorithms using NLP support with TF-IDF vectorizer and using word2vec. We got high accuracy of 90.5% with the Multiclass Logistic Regression model. Hence, this model can run in the backend of bank applications of customer support and help in classifying the context and right category of complaint such that it can be connected to the right customer agent who can tackle the problem.</description><subject>Algorithms</subject><subject>Customer services</subject><subject>Customers</subject><subject>Regression models</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE1Lw0AURQdRMFYX_oOAuBFS38t8JUspVoWgLiq4G8bJTJvaZuLMZOG_N9KuLhcu58Ih5BphjiDoPZ8D1gKFOCEZco6FnMopyQBqVpSMfp6Tixi3AGUtZZWR25U237uuX-dmjMnvbcjjOAw-pDxtgh_Xm_y1eb8kZ07vor065ox8LB9Xi-eieXt6WTw0xYCUpkJahsIiGFHTtvySmrdOMGktBdNKkJXlaJzAlqHjSF3FmeMaKsvAGiEYnZGbA3cI_me0MamtH0M_XSoKEwmrmvNpdXdYRdMlnTrfqyF0ex1-FYL616C4Omqgfz5fTSA</recordid><startdate>20240605</startdate><enddate>20240605</enddate><creator>Sunil, Goli</creator><creator>Areefa</creator><creator>Pragathi, Kota</creator><creator>Rishitha, Koyyada</creator><creator>Kumar, Sambari Praveen</creator><creator>Dhandapani, Kothandaraman</creator><creator>Reddy, Rajasri</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240605</creationdate><title>Tackling customer support through NLP</title><author>Sunil, Goli ; Areefa ; Pragathi, Kota ; Rishitha, Koyyada ; Kumar, Sambari Praveen ; Dhandapani, Kothandaraman ; Reddy, Rajasri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-7e416e10c693d2b7a5df647ee30cd7078e51cf61d41f513f854f5a08e40ec6643</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Customer services</topic><topic>Customers</topic><topic>Regression models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sunil, Goli</creatorcontrib><creatorcontrib>Areefa</creatorcontrib><creatorcontrib>Pragathi, Kota</creatorcontrib><creatorcontrib>Rishitha, Koyyada</creatorcontrib><creatorcontrib>Kumar, Sambari Praveen</creatorcontrib><creatorcontrib>Dhandapani, Kothandaraman</creatorcontrib><creatorcontrib>Reddy, Rajasri</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sunil, Goli</au><au>Areefa</au><au>Pragathi, Kota</au><au>Rishitha, Koyyada</au><au>Kumar, Sambari Praveen</au><au>Dhandapani, Kothandaraman</au><au>Reddy, Rajasri</au><au>Mahender, Kommabatla</au><au>Reddy, I. Rajasri</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Tackling customer support through NLP</atitle><btitle>AIP conference proceedings</btitle><date>2024-06-05</date><risdate>2024</risdate><volume>2971</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>There is a high boom in consulting companies handling worldwide clients and customers with different services. Hence, there is a dire need of understanding the customer’s problems to make improvements in the company’s product or services. The company’s customer support hires many people in this regard, but customer complaints are delayed. Therefore, tackling customer support by using an automation model with the help of NLP would be a suitable idea. In this paper, we proposed an efficient methodology of an ML model trained by various algorithms using NLP support with TF-IDF vectorizer and using word2vec. We got high accuracy of 90.5% with the Multiclass Logistic Regression model. Hence, this model can run in the backend of bank applications of customer support and help in classifying the context and right category of complaint such that it can be connected to the right customer agent who can tackle the problem.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0196166</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.2971 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_3064718955
source AIP Journals Complete
subjects Algorithms
Customer services
Customers
Regression models
title Tackling customer support through NLP
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T08%3A25%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Tackling%20customer%20support%20through%20NLP&rft.btitle=AIP%20conference%20proceedings&rft.au=Sunil,%20Goli&rft.date=2024-06-05&rft.volume=2971&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0196166&rft_dat=%3Cproquest_scita%3E3064718955%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064718955&rft_id=info:pmid/&rfr_iscdi=true