Synthetic Data-Integrated Li-Ion Battery Modeling for eVTOL Energy Systems
Lithium-ion batteries play a crucial role in present-day energy storage systems, necessitating the development of precise prediction models to improve their performance and ensure safety. The present study introduces a comprehensive methodology that encompasses the calibration, validation, and appli...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.76329-76343 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 76343 |
---|---|
container_issue | |
container_start_page | 76329 |
container_title | IEEE access |
container_volume | 12 |
creator | Qasem, Mohammad Stoyanov, Stoyan Ratrout, Sadam Haddadin, Mariana Yassin, Yazan Chen, Chengxiu Al-Hallaj, Said Krishnamurthy, Mahesh |
description | Lithium-ion batteries play a crucial role in present-day energy storage systems, necessitating the development of precise prediction models to improve their performance and ensure safety. The present study introduces a comprehensive methodology that encompasses the calibration, validation, and application of two separate Li-ion battery electrochemical models: the equivalent circuit model and the electrochemistry-based model. The calibration and validation of these models are based on experimental data conducted under various operating conditions, including charge/discharge rates, calendaring temperature, and Hybrid Pulse Power Characterization (HPPC) tests. After the successful validation process, these models are used to generate synthetic data tailored to real-world applications, particularly electric vertical takeoff and landing vehicles (eVTOL). The primary objective is to assess the precision of battery performance prediction, wherein the synthetic data is thoroughly compared with real experimental data. The results demonstrate the effectiveness of the proposed approach in developing a model that reduces dependence on labor-intensive testing and associated equipment costs, reduces time for experimentation, and accelerates controller development for batteries. This work highlights the importance of precise predictive models in lithium-ion batteries, facilitating the effective investigation of practical applications and advancements in energy storage technology. |
doi_str_mv | 10.1109/ACCESS.2024.3407016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_3064713794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10540386</ieee_id><doaj_id>oai_doaj_org_article_047ebfc87a944e329e447982d1ffdad8</doaj_id><sourcerecordid>3064713794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-9723fb83dd09b523680c4081ecdef0c9671fec87e979d35438321dfbf4fe8223</originalsourceid><addsrcrecordid>eNpNUcFOwzAMrRBITMAXwKES544kTpvkCGPA0BCHTVyjrHFGp9GMNBz692R0QvPF1pPf87Nell1TMqaUqLv7yWS6WIwZYXwMnAhCq5NsxGilCiihOj2az7OrrtuQVDJBpRhlr4u-jZ8Ymzp_NNEUszbiOpiINp83xcy3-YOJEUOfv3mL26Zd586HHD-W7_N82mJY9_mi7yJ-dZfZmTPbDq8O_SJbPk2Xk5di_v48m9zPixpKFQslGLiVBGuJWpUMKklqnvxgbdGRWlWCOqylQCWUhZKDBEatWznuUDIGF9lskLXebPQuNF8m9NqbRv8BPqy1CemfLWrCBa5c0jKKcwSmkHOhJLPUOWusTFq3g9Yu-O8f7KLe-J_QJvcaSMUFBaF42oJhqw6-6wK6_6uU6H0EeohA7yPQhwgS62ZgNYh4xCg5AVnBL7rvgOQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064713794</pqid></control><display><type>article</type><title>Synthetic Data-Integrated Li-Ion Battery Modeling for eVTOL Energy Systems</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Qasem, Mohammad ; Stoyanov, Stoyan ; Ratrout, Sadam ; Haddadin, Mariana ; Yassin, Yazan ; Chen, Chengxiu ; Al-Hallaj, Said ; Krishnamurthy, Mahesh</creator><creatorcontrib>Qasem, Mohammad ; Stoyanov, Stoyan ; Ratrout, Sadam ; Haddadin, Mariana ; Yassin, Yazan ; Chen, Chengxiu ; Al-Hallaj, Said ; Krishnamurthy, Mahesh</creatorcontrib><description>Lithium-ion batteries play a crucial role in present-day energy storage systems, necessitating the development of precise prediction models to improve their performance and ensure safety. The present study introduces a comprehensive methodology that encompasses the calibration, validation, and application of two separate Li-ion battery electrochemical models: the equivalent circuit model and the electrochemistry-based model. The calibration and validation of these models are based on experimental data conducted under various operating conditions, including charge/discharge rates, calendaring temperature, and Hybrid Pulse Power Characterization (HPPC) tests. After the successful validation process, these models are used to generate synthetic data tailored to real-world applications, particularly electric vertical takeoff and landing vehicles (eVTOL). The primary objective is to assess the precision of battery performance prediction, wherein the synthetic data is thoroughly compared with real experimental data. The results demonstrate the effectiveness of the proposed approach in developing a model that reduces dependence on labor-intensive testing and associated equipment costs, reduces time for experimentation, and accelerates controller development for batteries. This work highlights the importance of precise predictive models in lithium-ion batteries, facilitating the effective investigation of practical applications and advancements in energy storage technology.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3407016</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aging ; Calibration ; Computational modeling ; Electrochemistry ; electrochemistry-based model ; Energy storage ; Equipment costs ; equivalent circuit model ; Equivalent circuits ; eVTOL ; Integrated circuit modeling ; Lithium-ion batteries ; Mathematical models ; Performance prediction ; Prediction models ; Predictive models ; Real-time systems ; Rechargeable batteries ; Storage systems ; Synthetic data ; Vertical takeoff</subject><ispartof>IEEE access, 2024, Vol.12, p.76329-76343</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-9723fb83dd09b523680c4081ecdef0c9671fec87e979d35438321dfbf4fe8223</cites><orcidid>0000-0002-1851-9666 ; 0009-0001-3582-7214 ; 0009-0004-0410-0380 ; 0009-0007-6720-3733 ; 0009-0003-1093-1909 ; 0000-0002-5147-7621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10540386$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,4009,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Qasem, Mohammad</creatorcontrib><creatorcontrib>Stoyanov, Stoyan</creatorcontrib><creatorcontrib>Ratrout, Sadam</creatorcontrib><creatorcontrib>Haddadin, Mariana</creatorcontrib><creatorcontrib>Yassin, Yazan</creatorcontrib><creatorcontrib>Chen, Chengxiu</creatorcontrib><creatorcontrib>Al-Hallaj, Said</creatorcontrib><creatorcontrib>Krishnamurthy, Mahesh</creatorcontrib><title>Synthetic Data-Integrated Li-Ion Battery Modeling for eVTOL Energy Systems</title><title>IEEE access</title><addtitle>Access</addtitle><description>Lithium-ion batteries play a crucial role in present-day energy storage systems, necessitating the development of precise prediction models to improve their performance and ensure safety. The present study introduces a comprehensive methodology that encompasses the calibration, validation, and application of two separate Li-ion battery electrochemical models: the equivalent circuit model and the electrochemistry-based model. The calibration and validation of these models are based on experimental data conducted under various operating conditions, including charge/discharge rates, calendaring temperature, and Hybrid Pulse Power Characterization (HPPC) tests. After the successful validation process, these models are used to generate synthetic data tailored to real-world applications, particularly electric vertical takeoff and landing vehicles (eVTOL). The primary objective is to assess the precision of battery performance prediction, wherein the synthetic data is thoroughly compared with real experimental data. The results demonstrate the effectiveness of the proposed approach in developing a model that reduces dependence on labor-intensive testing and associated equipment costs, reduces time for experimentation, and accelerates controller development for batteries. This work highlights the importance of precise predictive models in lithium-ion batteries, facilitating the effective investigation of practical applications and advancements in energy storage technology.</description><subject>Aging</subject><subject>Calibration</subject><subject>Computational modeling</subject><subject>Electrochemistry</subject><subject>electrochemistry-based model</subject><subject>Energy storage</subject><subject>Equipment costs</subject><subject>equivalent circuit model</subject><subject>Equivalent circuits</subject><subject>eVTOL</subject><subject>Integrated circuit modeling</subject><subject>Lithium-ion batteries</subject><subject>Mathematical models</subject><subject>Performance prediction</subject><subject>Prediction models</subject><subject>Predictive models</subject><subject>Real-time systems</subject><subject>Rechargeable batteries</subject><subject>Storage systems</subject><subject>Synthetic data</subject><subject>Vertical takeoff</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFOwzAMrRBITMAXwKES544kTpvkCGPA0BCHTVyjrHFGp9GMNBz692R0QvPF1pPf87Nell1TMqaUqLv7yWS6WIwZYXwMnAhCq5NsxGilCiihOj2az7OrrtuQVDJBpRhlr4u-jZ8Ymzp_NNEUszbiOpiINp83xcy3-YOJEUOfv3mL26Zd586HHD-W7_N82mJY9_mi7yJ-dZfZmTPbDq8O_SJbPk2Xk5di_v48m9zPixpKFQslGLiVBGuJWpUMKklqnvxgbdGRWlWCOqylQCWUhZKDBEatWznuUDIGF9lskLXebPQuNF8m9NqbRv8BPqy1CemfLWrCBa5c0jKKcwSmkHOhJLPUOWusTFq3g9Yu-O8f7KLe-J_QJvcaSMUFBaF42oJhqw6-6wK6_6uU6H0EeohA7yPQhwgS62ZgNYh4xCg5AVnBL7rvgOQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Qasem, Mohammad</creator><creator>Stoyanov, Stoyan</creator><creator>Ratrout, Sadam</creator><creator>Haddadin, Mariana</creator><creator>Yassin, Yazan</creator><creator>Chen, Chengxiu</creator><creator>Al-Hallaj, Said</creator><creator>Krishnamurthy, Mahesh</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1851-9666</orcidid><orcidid>https://orcid.org/0009-0001-3582-7214</orcidid><orcidid>https://orcid.org/0009-0004-0410-0380</orcidid><orcidid>https://orcid.org/0009-0007-6720-3733</orcidid><orcidid>https://orcid.org/0009-0003-1093-1909</orcidid><orcidid>https://orcid.org/0000-0002-5147-7621</orcidid></search><sort><creationdate>2024</creationdate><title>Synthetic Data-Integrated Li-Ion Battery Modeling for eVTOL Energy Systems</title><author>Qasem, Mohammad ; Stoyanov, Stoyan ; Ratrout, Sadam ; Haddadin, Mariana ; Yassin, Yazan ; Chen, Chengxiu ; Al-Hallaj, Said ; Krishnamurthy, Mahesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-9723fb83dd09b523680c4081ecdef0c9671fec87e979d35438321dfbf4fe8223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aging</topic><topic>Calibration</topic><topic>Computational modeling</topic><topic>Electrochemistry</topic><topic>electrochemistry-based model</topic><topic>Energy storage</topic><topic>Equipment costs</topic><topic>equivalent circuit model</topic><topic>Equivalent circuits</topic><topic>eVTOL</topic><topic>Integrated circuit modeling</topic><topic>Lithium-ion batteries</topic><topic>Mathematical models</topic><topic>Performance prediction</topic><topic>Prediction models</topic><topic>Predictive models</topic><topic>Real-time systems</topic><topic>Rechargeable batteries</topic><topic>Storage systems</topic><topic>Synthetic data</topic><topic>Vertical takeoff</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qasem, Mohammad</creatorcontrib><creatorcontrib>Stoyanov, Stoyan</creatorcontrib><creatorcontrib>Ratrout, Sadam</creatorcontrib><creatorcontrib>Haddadin, Mariana</creatorcontrib><creatorcontrib>Yassin, Yazan</creatorcontrib><creatorcontrib>Chen, Chengxiu</creatorcontrib><creatorcontrib>Al-Hallaj, Said</creatorcontrib><creatorcontrib>Krishnamurthy, Mahesh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qasem, Mohammad</au><au>Stoyanov, Stoyan</au><au>Ratrout, Sadam</au><au>Haddadin, Mariana</au><au>Yassin, Yazan</au><au>Chen, Chengxiu</au><au>Al-Hallaj, Said</au><au>Krishnamurthy, Mahesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthetic Data-Integrated Li-Ion Battery Modeling for eVTOL Energy Systems</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>76329</spage><epage>76343</epage><pages>76329-76343</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Lithium-ion batteries play a crucial role in present-day energy storage systems, necessitating the development of precise prediction models to improve their performance and ensure safety. The present study introduces a comprehensive methodology that encompasses the calibration, validation, and application of two separate Li-ion battery electrochemical models: the equivalent circuit model and the electrochemistry-based model. The calibration and validation of these models are based on experimental data conducted under various operating conditions, including charge/discharge rates, calendaring temperature, and Hybrid Pulse Power Characterization (HPPC) tests. After the successful validation process, these models are used to generate synthetic data tailored to real-world applications, particularly electric vertical takeoff and landing vehicles (eVTOL). The primary objective is to assess the precision of battery performance prediction, wherein the synthetic data is thoroughly compared with real experimental data. The results demonstrate the effectiveness of the proposed approach in developing a model that reduces dependence on labor-intensive testing and associated equipment costs, reduces time for experimentation, and accelerates controller development for batteries. This work highlights the importance of precise predictive models in lithium-ion batteries, facilitating the effective investigation of practical applications and advancements in energy storage technology.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3407016</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1851-9666</orcidid><orcidid>https://orcid.org/0009-0001-3582-7214</orcidid><orcidid>https://orcid.org/0009-0004-0410-0380</orcidid><orcidid>https://orcid.org/0009-0007-6720-3733</orcidid><orcidid>https://orcid.org/0009-0003-1093-1909</orcidid><orcidid>https://orcid.org/0000-0002-5147-7621</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.76329-76343 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_3064713794 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Aging Calibration Computational modeling Electrochemistry electrochemistry-based model Energy storage Equipment costs equivalent circuit model Equivalent circuits eVTOL Integrated circuit modeling Lithium-ion batteries Mathematical models Performance prediction Prediction models Predictive models Real-time systems Rechargeable batteries Storage systems Synthetic data Vertical takeoff |
title | Synthetic Data-Integrated Li-Ion Battery Modeling for eVTOL Energy Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T01%3A25%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthetic%20Data-Integrated%20Li-Ion%20Battery%20Modeling%20for%20eVTOL%20Energy%20Systems&rft.jtitle=IEEE%20access&rft.au=Qasem,%20Mohammad&rft.date=2024&rft.volume=12&rft.spage=76329&rft.epage=76343&rft.pages=76329-76343&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3407016&rft_dat=%3Cproquest_ieee_%3E3064713794%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064713794&rft_id=info:pmid/&rft_ieee_id=10540386&rft_doaj_id=oai_doaj_org_article_047ebfc87a944e329e447982d1ffdad8&rfr_iscdi=true |