Relationship Between Cognitive Features and Social Media Engagement: An Analysis of YouTube Science Videos
Engagement is critical for social media and learning. Yet research on engagement with YouTube educational videos has been lacking despite the increasing popularity of YouTube as a viable social media platform for learning. In this article, we address this research gap. We adopt the social media enga...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on engineering management 2024, Vol.71, p.10116-10125 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10125 |
---|---|
container_issue | |
container_start_page | 10116 |
container_title | IEEE transactions on engineering management |
container_volume | 71 |
creator | Tan, Songxin Shen, Zixing |
description | Engagement is critical for social media and learning. Yet research on engagement with YouTube educational videos has been lacking despite the increasing popularity of YouTube as a viable social media platform for learning. In this article, we address this research gap. We adopt the social media engagement 4-I model (involvement, intimacy, interaction, and influence) and investigate how the cognitive features of segmenting and signaling in YouTube educational videos collectively relate to social media engagement. We sampled YouTube science videos on physics and astronomy topics. We measured social media engagement from YouTube analytics and coded the cognitive features of segmenting and signaling (textual and visual signaling) in the YouTube videos. Our analyses show that segmenting has a significant negative relationship with three dimensions of social engagement (involvement, intimacy, and interaction). They also reveal that textual signaling has a significant relationship with three dimensions (involvement, intimacy, and interaction) and visual signaling with all four dimensions of social media engagement. Our study contributes to the literature on social media engagement. It also adds to the multimedia learning literature. Our study provides guidelines for video designers and developers to engage video viewers on social media better. |
doi_str_mv | 10.1109/TEM.2023.3330677 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3064702582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10320094</ieee_id><sourcerecordid>3064702582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-a8b3f214a9e0e09426bcd13b17e636502b8b7fe74dfe375cf5212411d89d86b43</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFbvHjwseE6d_cqHt1paFVoEWwVPYZNM6pZ0t2YTpf_elfYgDAwDzzu8PIRcMxgxBtndaroYceBiJISAOElOyIAplUYAEk7JAIClUSYydk4uvN-EUyoOA7J5xUZ3xln_aXb0AbsfREsnbm1NZ76RzlB3fYuealvRpSuNbugCK6Pp1K71Grdou3s6tmF0s_fGU1fTD9ev-gLpsjRoS6TvpkLnL8lZrRuPV8c9JG-z6WryFM1fHp8n43lUcqm6SKeFqDmTOkNAyCSPi7JiomAJxiJWwIu0SGpMZFWjSFRZK864ZKxKsyqNCymG5Pbwd9e6rx59l29c34Z6Pg9mZAJcpTxQcKDK1nnfYp3vWrPV7T5nkP8ZzYPR_M9ofjQaIjeHiEHEf7jgEHqKX_PkcYc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064702582</pqid></control><display><type>article</type><title>Relationship Between Cognitive Features and Social Media Engagement: An Analysis of YouTube Science Videos</title><source>IEEE Electronic Library (IEL)</source><creator>Tan, Songxin ; Shen, Zixing</creator><creatorcontrib>Tan, Songxin ; Shen, Zixing</creatorcontrib><description>Engagement is critical for social media and learning. Yet research on engagement with YouTube educational videos has been lacking despite the increasing popularity of YouTube as a viable social media platform for learning. In this article, we address this research gap. We adopt the social media engagement 4-I model (involvement, intimacy, interaction, and influence) and investigate how the cognitive features of segmenting and signaling in YouTube educational videos collectively relate to social media engagement. We sampled YouTube science videos on physics and astronomy topics. We measured social media engagement from YouTube analytics and coded the cognitive features of segmenting and signaling (textual and visual signaling) in the YouTube videos. Our analyses show that segmenting has a significant negative relationship with three dimensions of social engagement (involvement, intimacy, and interaction). They also reveal that textual signaling has a significant relationship with three dimensions (involvement, intimacy, and interaction) and visual signaling with all four dimensions of social media engagement. Our study contributes to the literature on social media engagement. It also adds to the multimedia learning literature. Our study provides guidelines for video designers and developers to engage video viewers on social media better.</description><identifier>ISSN: 0018-9391</identifier><identifier>EISSN: 1558-0040</identifier><identifier>DOI: 10.1109/TEM.2023.3330677</identifier><identifier>CODEN: IEEMA4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Astronomy ; Cognitive features ; Cognitive processes ; Digital media ; Education ; Educational films ; educational videos ; Intimacy ; Learning ; Media ; Multimedia ; Science ; segmenting ; signaling ; social media engagement ; Social networking (online) ; Social networks ; Video ; Video on demand ; Videos ; Visualization ; YouTube</subject><ispartof>IEEE transactions on engineering management, 2024, Vol.71, p.10116-10125</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-a8b3f214a9e0e09426bcd13b17e636502b8b7fe74dfe375cf5212411d89d86b43</cites><orcidid>0000-0002-1367-6697 ; 0000-0002-0807-3525</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10320094$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10320094$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tan, Songxin</creatorcontrib><creatorcontrib>Shen, Zixing</creatorcontrib><title>Relationship Between Cognitive Features and Social Media Engagement: An Analysis of YouTube Science Videos</title><title>IEEE transactions on engineering management</title><addtitle>TEM</addtitle><description>Engagement is critical for social media and learning. Yet research on engagement with YouTube educational videos has been lacking despite the increasing popularity of YouTube as a viable social media platform for learning. In this article, we address this research gap. We adopt the social media engagement 4-I model (involvement, intimacy, interaction, and influence) and investigate how the cognitive features of segmenting and signaling in YouTube educational videos collectively relate to social media engagement. We sampled YouTube science videos on physics and astronomy topics. We measured social media engagement from YouTube analytics and coded the cognitive features of segmenting and signaling (textual and visual signaling) in the YouTube videos. Our analyses show that segmenting has a significant negative relationship with three dimensions of social engagement (involvement, intimacy, and interaction). They also reveal that textual signaling has a significant relationship with three dimensions (involvement, intimacy, and interaction) and visual signaling with all four dimensions of social media engagement. Our study contributes to the literature on social media engagement. It also adds to the multimedia learning literature. Our study provides guidelines for video designers and developers to engage video viewers on social media better.</description><subject>Astronomy</subject><subject>Cognitive features</subject><subject>Cognitive processes</subject><subject>Digital media</subject><subject>Education</subject><subject>Educational films</subject><subject>educational videos</subject><subject>Intimacy</subject><subject>Learning</subject><subject>Media</subject><subject>Multimedia</subject><subject>Science</subject><subject>segmenting</subject><subject>signaling</subject><subject>social media engagement</subject><subject>Social networking (online)</subject><subject>Social networks</subject><subject>Video</subject><subject>Video on demand</subject><subject>Videos</subject><subject>Visualization</subject><subject>YouTube</subject><issn>0018-9391</issn><issn>1558-0040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFbvHjwseE6d_cqHt1paFVoEWwVPYZNM6pZ0t2YTpf_elfYgDAwDzzu8PIRcMxgxBtndaroYceBiJISAOElOyIAplUYAEk7JAIClUSYydk4uvN-EUyoOA7J5xUZ3xln_aXb0AbsfREsnbm1NZ76RzlB3fYuealvRpSuNbugCK6Pp1K71Grdou3s6tmF0s_fGU1fTD9ev-gLpsjRoS6TvpkLnL8lZrRuPV8c9JG-z6WryFM1fHp8n43lUcqm6SKeFqDmTOkNAyCSPi7JiomAJxiJWwIu0SGpMZFWjSFRZK864ZKxKsyqNCymG5Pbwd9e6rx59l29c34Z6Pg9mZAJcpTxQcKDK1nnfYp3vWrPV7T5nkP8ZzYPR_M9ofjQaIjeHiEHEf7jgEHqKX_PkcYc</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Tan, Songxin</creator><creator>Shen, Zixing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1367-6697</orcidid><orcidid>https://orcid.org/0000-0002-0807-3525</orcidid></search><sort><creationdate>2024</creationdate><title>Relationship Between Cognitive Features and Social Media Engagement: An Analysis of YouTube Science Videos</title><author>Tan, Songxin ; Shen, Zixing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-a8b3f214a9e0e09426bcd13b17e636502b8b7fe74dfe375cf5212411d89d86b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Astronomy</topic><topic>Cognitive features</topic><topic>Cognitive processes</topic><topic>Digital media</topic><topic>Education</topic><topic>Educational films</topic><topic>educational videos</topic><topic>Intimacy</topic><topic>Learning</topic><topic>Media</topic><topic>Multimedia</topic><topic>Science</topic><topic>segmenting</topic><topic>signaling</topic><topic>social media engagement</topic><topic>Social networking (online)</topic><topic>Social networks</topic><topic>Video</topic><topic>Video on demand</topic><topic>Videos</topic><topic>Visualization</topic><topic>YouTube</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Songxin</creatorcontrib><creatorcontrib>Shen, Zixing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on engineering management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tan, Songxin</au><au>Shen, Zixing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relationship Between Cognitive Features and Social Media Engagement: An Analysis of YouTube Science Videos</atitle><jtitle>IEEE transactions on engineering management</jtitle><stitle>TEM</stitle><date>2024</date><risdate>2024</risdate><volume>71</volume><spage>10116</spage><epage>10125</epage><pages>10116-10125</pages><issn>0018-9391</issn><eissn>1558-0040</eissn><coden>IEEMA4</coden><abstract>Engagement is critical for social media and learning. Yet research on engagement with YouTube educational videos has been lacking despite the increasing popularity of YouTube as a viable social media platform for learning. In this article, we address this research gap. We adopt the social media engagement 4-I model (involvement, intimacy, interaction, and influence) and investigate how the cognitive features of segmenting and signaling in YouTube educational videos collectively relate to social media engagement. We sampled YouTube science videos on physics and astronomy topics. We measured social media engagement from YouTube analytics and coded the cognitive features of segmenting and signaling (textual and visual signaling) in the YouTube videos. Our analyses show that segmenting has a significant negative relationship with three dimensions of social engagement (involvement, intimacy, and interaction). They also reveal that textual signaling has a significant relationship with three dimensions (involvement, intimacy, and interaction) and visual signaling with all four dimensions of social media engagement. Our study contributes to the literature on social media engagement. It also adds to the multimedia learning literature. Our study provides guidelines for video designers and developers to engage video viewers on social media better.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEM.2023.3330677</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1367-6697</orcidid><orcidid>https://orcid.org/0000-0002-0807-3525</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9391 |
ispartof | IEEE transactions on engineering management, 2024, Vol.71, p.10116-10125 |
issn | 0018-9391 1558-0040 |
language | eng |
recordid | cdi_proquest_journals_3064702582 |
source | IEEE Electronic Library (IEL) |
subjects | Astronomy Cognitive features Cognitive processes Digital media Education Educational films educational videos Intimacy Learning Media Multimedia Science segmenting signaling social media engagement Social networking (online) Social networks Video Video on demand Videos Visualization YouTube |
title | Relationship Between Cognitive Features and Social Media Engagement: An Analysis of YouTube Science Videos |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T19%3A46%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relationship%20Between%20Cognitive%20Features%20and%20Social%20Media%20Engagement:%20An%20Analysis%20of%20YouTube%20Science%20Videos&rft.jtitle=IEEE%20transactions%20on%20engineering%20management&rft.au=Tan,%20Songxin&rft.date=2024&rft.volume=71&rft.spage=10116&rft.epage=10125&rft.pages=10116-10125&rft.issn=0018-9391&rft.eissn=1558-0040&rft.coden=IEEMA4&rft_id=info:doi/10.1109/TEM.2023.3330677&rft_dat=%3Cproquest_RIE%3E3064702582%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064702582&rft_id=info:pmid/&rft_ieee_id=10320094&rfr_iscdi=true |