Relationship Between Cognitive Features and Social Media Engagement: An Analysis of YouTube Science Videos

Engagement is critical for social media and learning. Yet research on engagement with YouTube educational videos has been lacking despite the increasing popularity of YouTube as a viable social media platform for learning. In this article, we address this research gap. We adopt the social media enga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on engineering management 2024, Vol.71, p.10116-10125
Hauptverfasser: Tan, Songxin, Shen, Zixing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10125
container_issue
container_start_page 10116
container_title IEEE transactions on engineering management
container_volume 71
creator Tan, Songxin
Shen, Zixing
description Engagement is critical for social media and learning. Yet research on engagement with YouTube educational videos has been lacking despite the increasing popularity of YouTube as a viable social media platform for learning. In this article, we address this research gap. We adopt the social media engagement 4-I model (involvement, intimacy, interaction, and influence) and investigate how the cognitive features of segmenting and signaling in YouTube educational videos collectively relate to social media engagement. We sampled YouTube science videos on physics and astronomy topics. We measured social media engagement from YouTube analytics and coded the cognitive features of segmenting and signaling (textual and visual signaling) in the YouTube videos. Our analyses show that segmenting has a significant negative relationship with three dimensions of social engagement (involvement, intimacy, and interaction). They also reveal that textual signaling has a significant relationship with three dimensions (involvement, intimacy, and interaction) and visual signaling with all four dimensions of social media engagement. Our study contributes to the literature on social media engagement. It also adds to the multimedia learning literature. Our study provides guidelines for video designers and developers to engage video viewers on social media better.
doi_str_mv 10.1109/TEM.2023.3330677
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3064702582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10320094</ieee_id><sourcerecordid>3064702582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-a8b3f214a9e0e09426bcd13b17e636502b8b7fe74dfe375cf5212411d89d86b43</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFbvHjwseE6d_cqHt1paFVoEWwVPYZNM6pZ0t2YTpf_elfYgDAwDzzu8PIRcMxgxBtndaroYceBiJISAOElOyIAplUYAEk7JAIClUSYydk4uvN-EUyoOA7J5xUZ3xln_aXb0AbsfREsnbm1NZ76RzlB3fYuealvRpSuNbugCK6Pp1K71Grdou3s6tmF0s_fGU1fTD9ev-gLpsjRoS6TvpkLnL8lZrRuPV8c9JG-z6WryFM1fHp8n43lUcqm6SKeFqDmTOkNAyCSPi7JiomAJxiJWwIu0SGpMZFWjSFRZK864ZKxKsyqNCymG5Pbwd9e6rx59l29c34Z6Pg9mZAJcpTxQcKDK1nnfYp3vWrPV7T5nkP8ZzYPR_M9ofjQaIjeHiEHEf7jgEHqKX_PkcYc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064702582</pqid></control><display><type>article</type><title>Relationship Between Cognitive Features and Social Media Engagement: An Analysis of YouTube Science Videos</title><source>IEEE Electronic Library (IEL)</source><creator>Tan, Songxin ; Shen, Zixing</creator><creatorcontrib>Tan, Songxin ; Shen, Zixing</creatorcontrib><description>Engagement is critical for social media and learning. Yet research on engagement with YouTube educational videos has been lacking despite the increasing popularity of YouTube as a viable social media platform for learning. In this article, we address this research gap. We adopt the social media engagement 4-I model (involvement, intimacy, interaction, and influence) and investigate how the cognitive features of segmenting and signaling in YouTube educational videos collectively relate to social media engagement. We sampled YouTube science videos on physics and astronomy topics. We measured social media engagement from YouTube analytics and coded the cognitive features of segmenting and signaling (textual and visual signaling) in the YouTube videos. Our analyses show that segmenting has a significant negative relationship with three dimensions of social engagement (involvement, intimacy, and interaction). They also reveal that textual signaling has a significant relationship with three dimensions (involvement, intimacy, and interaction) and visual signaling with all four dimensions of social media engagement. Our study contributes to the literature on social media engagement. It also adds to the multimedia learning literature. Our study provides guidelines for video designers and developers to engage video viewers on social media better.</description><identifier>ISSN: 0018-9391</identifier><identifier>EISSN: 1558-0040</identifier><identifier>DOI: 10.1109/TEM.2023.3330677</identifier><identifier>CODEN: IEEMA4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Astronomy ; Cognitive features ; Cognitive processes ; Digital media ; Education ; Educational films ; educational videos ; Intimacy ; Learning ; Media ; Multimedia ; Science ; segmenting ; signaling ; social media engagement ; Social networking (online) ; Social networks ; Video ; Video on demand ; Videos ; Visualization ; YouTube</subject><ispartof>IEEE transactions on engineering management, 2024, Vol.71, p.10116-10125</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-a8b3f214a9e0e09426bcd13b17e636502b8b7fe74dfe375cf5212411d89d86b43</cites><orcidid>0000-0002-1367-6697 ; 0000-0002-0807-3525</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10320094$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10320094$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tan, Songxin</creatorcontrib><creatorcontrib>Shen, Zixing</creatorcontrib><title>Relationship Between Cognitive Features and Social Media Engagement: An Analysis of YouTube Science Videos</title><title>IEEE transactions on engineering management</title><addtitle>TEM</addtitle><description>Engagement is critical for social media and learning. Yet research on engagement with YouTube educational videos has been lacking despite the increasing popularity of YouTube as a viable social media platform for learning. In this article, we address this research gap. We adopt the social media engagement 4-I model (involvement, intimacy, interaction, and influence) and investigate how the cognitive features of segmenting and signaling in YouTube educational videos collectively relate to social media engagement. We sampled YouTube science videos on physics and astronomy topics. We measured social media engagement from YouTube analytics and coded the cognitive features of segmenting and signaling (textual and visual signaling) in the YouTube videos. Our analyses show that segmenting has a significant negative relationship with three dimensions of social engagement (involvement, intimacy, and interaction). They also reveal that textual signaling has a significant relationship with three dimensions (involvement, intimacy, and interaction) and visual signaling with all four dimensions of social media engagement. Our study contributes to the literature on social media engagement. It also adds to the multimedia learning literature. Our study provides guidelines for video designers and developers to engage video viewers on social media better.</description><subject>Astronomy</subject><subject>Cognitive features</subject><subject>Cognitive processes</subject><subject>Digital media</subject><subject>Education</subject><subject>Educational films</subject><subject>educational videos</subject><subject>Intimacy</subject><subject>Learning</subject><subject>Media</subject><subject>Multimedia</subject><subject>Science</subject><subject>segmenting</subject><subject>signaling</subject><subject>social media engagement</subject><subject>Social networking (online)</subject><subject>Social networks</subject><subject>Video</subject><subject>Video on demand</subject><subject>Videos</subject><subject>Visualization</subject><subject>YouTube</subject><issn>0018-9391</issn><issn>1558-0040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFbvHjwseE6d_cqHt1paFVoEWwVPYZNM6pZ0t2YTpf_elfYgDAwDzzu8PIRcMxgxBtndaroYceBiJISAOElOyIAplUYAEk7JAIClUSYydk4uvN-EUyoOA7J5xUZ3xln_aXb0AbsfREsnbm1NZ76RzlB3fYuealvRpSuNbugCK6Pp1K71Grdou3s6tmF0s_fGU1fTD9ev-gLpsjRoS6TvpkLnL8lZrRuPV8c9JG-z6WryFM1fHp8n43lUcqm6SKeFqDmTOkNAyCSPi7JiomAJxiJWwIu0SGpMZFWjSFRZK864ZKxKsyqNCymG5Pbwd9e6rx59l29c34Z6Pg9mZAJcpTxQcKDK1nnfYp3vWrPV7T5nkP8ZzYPR_M9ofjQaIjeHiEHEf7jgEHqKX_PkcYc</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Tan, Songxin</creator><creator>Shen, Zixing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1367-6697</orcidid><orcidid>https://orcid.org/0000-0002-0807-3525</orcidid></search><sort><creationdate>2024</creationdate><title>Relationship Between Cognitive Features and Social Media Engagement: An Analysis of YouTube Science Videos</title><author>Tan, Songxin ; Shen, Zixing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-a8b3f214a9e0e09426bcd13b17e636502b8b7fe74dfe375cf5212411d89d86b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Astronomy</topic><topic>Cognitive features</topic><topic>Cognitive processes</topic><topic>Digital media</topic><topic>Education</topic><topic>Educational films</topic><topic>educational videos</topic><topic>Intimacy</topic><topic>Learning</topic><topic>Media</topic><topic>Multimedia</topic><topic>Science</topic><topic>segmenting</topic><topic>signaling</topic><topic>social media engagement</topic><topic>Social networking (online)</topic><topic>Social networks</topic><topic>Video</topic><topic>Video on demand</topic><topic>Videos</topic><topic>Visualization</topic><topic>YouTube</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Songxin</creatorcontrib><creatorcontrib>Shen, Zixing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on engineering management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tan, Songxin</au><au>Shen, Zixing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relationship Between Cognitive Features and Social Media Engagement: An Analysis of YouTube Science Videos</atitle><jtitle>IEEE transactions on engineering management</jtitle><stitle>TEM</stitle><date>2024</date><risdate>2024</risdate><volume>71</volume><spage>10116</spage><epage>10125</epage><pages>10116-10125</pages><issn>0018-9391</issn><eissn>1558-0040</eissn><coden>IEEMA4</coden><abstract>Engagement is critical for social media and learning. Yet research on engagement with YouTube educational videos has been lacking despite the increasing popularity of YouTube as a viable social media platform for learning. In this article, we address this research gap. We adopt the social media engagement 4-I model (involvement, intimacy, interaction, and influence) and investigate how the cognitive features of segmenting and signaling in YouTube educational videos collectively relate to social media engagement. We sampled YouTube science videos on physics and astronomy topics. We measured social media engagement from YouTube analytics and coded the cognitive features of segmenting and signaling (textual and visual signaling) in the YouTube videos. Our analyses show that segmenting has a significant negative relationship with three dimensions of social engagement (involvement, intimacy, and interaction). They also reveal that textual signaling has a significant relationship with three dimensions (involvement, intimacy, and interaction) and visual signaling with all four dimensions of social media engagement. Our study contributes to the literature on social media engagement. It also adds to the multimedia learning literature. Our study provides guidelines for video designers and developers to engage video viewers on social media better.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEM.2023.3330677</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1367-6697</orcidid><orcidid>https://orcid.org/0000-0002-0807-3525</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9391
ispartof IEEE transactions on engineering management, 2024, Vol.71, p.10116-10125
issn 0018-9391
1558-0040
language eng
recordid cdi_proquest_journals_3064702582
source IEEE Electronic Library (IEL)
subjects Astronomy
Cognitive features
Cognitive processes
Digital media
Education
Educational films
educational videos
Intimacy
Learning
Media
Multimedia
Science
segmenting
signaling
social media engagement
Social networking (online)
Social networks
Video
Video on demand
Videos
Visualization
YouTube
title Relationship Between Cognitive Features and Social Media Engagement: An Analysis of YouTube Science Videos
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T19%3A46%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relationship%20Between%20Cognitive%20Features%20and%20Social%20Media%20Engagement:%20An%20Analysis%20of%20YouTube%20Science%20Videos&rft.jtitle=IEEE%20transactions%20on%20engineering%20management&rft.au=Tan,%20Songxin&rft.date=2024&rft.volume=71&rft.spage=10116&rft.epage=10125&rft.pages=10116-10125&rft.issn=0018-9391&rft.eissn=1558-0040&rft.coden=IEEMA4&rft_id=info:doi/10.1109/TEM.2023.3330677&rft_dat=%3Cproquest_RIE%3E3064702582%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064702582&rft_id=info:pmid/&rft_ieee_id=10320094&rfr_iscdi=true