MIFNet: multimodal interactive fusion network for medication recommendation
Medication recommendation aims to provide clinicians with safe medicine combinations for the treatment of patients. Existing medication recommendation models are built based on the temporal structured code data of electronic health records (EHRs) in the medical database; nevertheless, unstructured d...
Gespeichert in:
Veröffentlicht in: | The Journal of supercomputing 2024, Vol.80 (9), p.12313-12345 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12345 |
---|---|
container_issue | 9 |
container_start_page | 12313 |
container_title | The Journal of supercomputing |
container_volume | 80 |
creator | Huo, Jiazhen Hong, Zhikai Chen, Mingzhou Duan, Yongrui |
description | Medication recommendation aims to provide clinicians with safe medicine combinations for the treatment of patients. Existing medication recommendation models are built based on the temporal structured code data of electronic health records (EHRs) in the medical database; nevertheless, unstructured data in EHRs, such as textual data containing rich information, are underexploited. To fill the gap, a novel multimodal interactive fusion network (MIFNet) is proposed for medication recommendation, which integrates both structured code information and unstructured text information in EHRs. Our model first extracts a series of informative feature representations to encode comprehensive patient health history and control potential drug–drug interactions (DDI), including medical code, clinical notes, and the DDI knowledge graph. Next, a novel cross-modal interaction extraction block is proposed to capture the intricate interaction information between the two modalities. Finally, a multimodal fusion block is adopted to fuse the constructed features and generate a medication combination list. Experiments are conducted on the public MIMIC-III dataset, and the results demonstrate that the proposed model outperforms the state-of-the-art medication recommendation methods on main evaluation metrics. |
doi_str_mv | 10.1007/s11227-024-05908-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3064674775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064674775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c01066def775db4a185feed9b5559c6e50616704407d745e3391a859e6d914633</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wisTaM41fMDlUUKgpsYG2l8QSlNHGxHRB_T9ogsWM1mtG5d6RDyDmDSwagryJjea4p5IKCNFBQdkAmTGpOQRTikEzA5EALKfJjchLjGgAE13xCHh4X8ydM11nbb1LTeldusqZLGMoqNZ-Y1X1sfJd1mL58eM9qH7IWXVOVaXcOWPm2xc7t11NyVJebiGe_c0pe57cvs3u6fL5bzG6WtOLMJFoBA6Uc1lpLtxIlK2SN6MxKSmkqhRIUUxqEAO20kMi5YWUhDSpnmFCcT8nF2LsN_qPHmOza96EbXloOSigthuaBykeqCj7GgLXdhqYtw7dlYHfS7CjNDtLsXpplQ4iPoTjA3RuGv-p_Uj-KNW7Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064674775</pqid></control><display><type>article</type><title>MIFNet: multimodal interactive fusion network for medication recommendation</title><source>Springer Nature - Complete Springer Journals</source><creator>Huo, Jiazhen ; Hong, Zhikai ; Chen, Mingzhou ; Duan, Yongrui</creator><creatorcontrib>Huo, Jiazhen ; Hong, Zhikai ; Chen, Mingzhou ; Duan, Yongrui</creatorcontrib><description>Medication recommendation aims to provide clinicians with safe medicine combinations for the treatment of patients. Existing medication recommendation models are built based on the temporal structured code data of electronic health records (EHRs) in the medical database; nevertheless, unstructured data in EHRs, such as textual data containing rich information, are underexploited. To fill the gap, a novel multimodal interactive fusion network (MIFNet) is proposed for medication recommendation, which integrates both structured code information and unstructured text information in EHRs. Our model first extracts a series of informative feature representations to encode comprehensive patient health history and control potential drug–drug interactions (DDI), including medical code, clinical notes, and the DDI knowledge graph. Next, a novel cross-modal interaction extraction block is proposed to capture the intricate interaction information between the two modalities. Finally, a multimodal fusion block is adopted to fuse the constructed features and generate a medication combination list. Experiments are conducted on the public MIMIC-III dataset, and the results demonstrate that the proposed model outperforms the state-of-the-art medication recommendation methods on main evaluation metrics.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-024-05908-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Compilers ; Computer Science ; Electronic health records ; Interpreters ; Knowledge representation ; Processor Architectures ; Programming Languages ; Recommender systems ; Unstructured data</subject><ispartof>The Journal of supercomputing, 2024, Vol.80 (9), p.12313-12345</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c01066def775db4a185feed9b5559c6e50616704407d745e3391a859e6d914633</citedby><cites>FETCH-LOGICAL-c319t-c01066def775db4a185feed9b5559c6e50616704407d745e3391a859e6d914633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-024-05908-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-024-05908-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Huo, Jiazhen</creatorcontrib><creatorcontrib>Hong, Zhikai</creatorcontrib><creatorcontrib>Chen, Mingzhou</creatorcontrib><creatorcontrib>Duan, Yongrui</creatorcontrib><title>MIFNet: multimodal interactive fusion network for medication recommendation</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>Medication recommendation aims to provide clinicians with safe medicine combinations for the treatment of patients. Existing medication recommendation models are built based on the temporal structured code data of electronic health records (EHRs) in the medical database; nevertheless, unstructured data in EHRs, such as textual data containing rich information, are underexploited. To fill the gap, a novel multimodal interactive fusion network (MIFNet) is proposed for medication recommendation, which integrates both structured code information and unstructured text information in EHRs. Our model first extracts a series of informative feature representations to encode comprehensive patient health history and control potential drug–drug interactions (DDI), including medical code, clinical notes, and the DDI knowledge graph. Next, a novel cross-modal interaction extraction block is proposed to capture the intricate interaction information between the two modalities. Finally, a multimodal fusion block is adopted to fuse the constructed features and generate a medication combination list. Experiments are conducted on the public MIMIC-III dataset, and the results demonstrate that the proposed model outperforms the state-of-the-art medication recommendation methods on main evaluation metrics.</description><subject>Compilers</subject><subject>Computer Science</subject><subject>Electronic health records</subject><subject>Interpreters</subject><subject>Knowledge representation</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Recommender systems</subject><subject>Unstructured data</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wisTaM41fMDlUUKgpsYG2l8QSlNHGxHRB_T9ogsWM1mtG5d6RDyDmDSwagryJjea4p5IKCNFBQdkAmTGpOQRTikEzA5EALKfJjchLjGgAE13xCHh4X8ydM11nbb1LTeldusqZLGMoqNZ-Y1X1sfJd1mL58eM9qH7IWXVOVaXcOWPm2xc7t11NyVJebiGe_c0pe57cvs3u6fL5bzG6WtOLMJFoBA6Uc1lpLtxIlK2SN6MxKSmkqhRIUUxqEAO20kMi5YWUhDSpnmFCcT8nF2LsN_qPHmOza96EbXloOSigthuaBykeqCj7GgLXdhqYtw7dlYHfS7CjNDtLsXpplQ4iPoTjA3RuGv-p_Uj-KNW7Y</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Huo, Jiazhen</creator><creator>Hong, Zhikai</creator><creator>Chen, Mingzhou</creator><creator>Duan, Yongrui</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>MIFNet: multimodal interactive fusion network for medication recommendation</title><author>Huo, Jiazhen ; Hong, Zhikai ; Chen, Mingzhou ; Duan, Yongrui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c01066def775db4a185feed9b5559c6e50616704407d745e3391a859e6d914633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Compilers</topic><topic>Computer Science</topic><topic>Electronic health records</topic><topic>Interpreters</topic><topic>Knowledge representation</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Recommender systems</topic><topic>Unstructured data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huo, Jiazhen</creatorcontrib><creatorcontrib>Hong, Zhikai</creatorcontrib><creatorcontrib>Chen, Mingzhou</creatorcontrib><creatorcontrib>Duan, Yongrui</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huo, Jiazhen</au><au>Hong, Zhikai</au><au>Chen, Mingzhou</au><au>Duan, Yongrui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MIFNet: multimodal interactive fusion network for medication recommendation</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2024</date><risdate>2024</risdate><volume>80</volume><issue>9</issue><spage>12313</spage><epage>12345</epage><pages>12313-12345</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>Medication recommendation aims to provide clinicians with safe medicine combinations for the treatment of patients. Existing medication recommendation models are built based on the temporal structured code data of electronic health records (EHRs) in the medical database; nevertheless, unstructured data in EHRs, such as textual data containing rich information, are underexploited. To fill the gap, a novel multimodal interactive fusion network (MIFNet) is proposed for medication recommendation, which integrates both structured code information and unstructured text information in EHRs. Our model first extracts a series of informative feature representations to encode comprehensive patient health history and control potential drug–drug interactions (DDI), including medical code, clinical notes, and the DDI knowledge graph. Next, a novel cross-modal interaction extraction block is proposed to capture the intricate interaction information between the two modalities. Finally, a multimodal fusion block is adopted to fuse the constructed features and generate a medication combination list. Experiments are conducted on the public MIMIC-III dataset, and the results demonstrate that the proposed model outperforms the state-of-the-art medication recommendation methods on main evaluation metrics.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-024-05908-1</doi><tpages>33</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-8542 |
ispartof | The Journal of supercomputing, 2024, Vol.80 (9), p.12313-12345 |
issn | 0920-8542 1573-0484 |
language | eng |
recordid | cdi_proquest_journals_3064674775 |
source | Springer Nature - Complete Springer Journals |
subjects | Compilers Computer Science Electronic health records Interpreters Knowledge representation Processor Architectures Programming Languages Recommender systems Unstructured data |
title | MIFNet: multimodal interactive fusion network for medication recommendation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T09%3A05%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MIFNet:%20multimodal%20interactive%20fusion%20network%20for%20medication%20recommendation&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Huo,%20Jiazhen&rft.date=2024&rft.volume=80&rft.issue=9&rft.spage=12313&rft.epage=12345&rft.pages=12313-12345&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-024-05908-1&rft_dat=%3Cproquest_cross%3E3064674775%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064674775&rft_id=info:pmid/&rfr_iscdi=true |