DM-YOLOX aerial object detection method with intensive attention mechanism

In aerial image detection, difficulties in feature extraction and low detection accuracy arise due to background interference, occlusion, and the presence of multiple small objects. This paper proposes a DM-YOLOX aerial object target detection method with intensive attention mechanism. Firstly, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing 2024-06, Vol.80 (9), p.12790-12812
Hauptverfasser: Li, Xiangyu, Wang, Fengping, Wang, Wei, Han, Yanjiang, Zhang, Jianyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12812
container_issue 9
container_start_page 12790
container_title The Journal of supercomputing
container_volume 80
creator Li, Xiangyu
Wang, Fengping
Wang, Wei
Han, Yanjiang
Zhang, Jianyang
description In aerial image detection, difficulties in feature extraction and low detection accuracy arise due to background interference, occlusion, and the presence of multiple small objects. This paper proposes a DM-YOLOX aerial object target detection method with intensive attention mechanism. Firstly, the proposed approach incorporates coordinate attention (CA) and a dense connection method into the backbone network architecture, enabling adaptive channel weighting throughout the feature extraction process. This facilitates the enhancement of significant features while suppressing less relevant ones, thereby augmenting the network’s capacity to represent object features and ensuring retention and reinforcement of key features. Secondly, the multibranch extraction module (MBE) is incorporated into the feature fusion network to enhance the network’s ability in extracting multi-scale feature information from images with extensive coverage, thereby enhancing the detection accuracy and efficiency of small- and medium-sized objects in complex scenes. Finally, the utilization of SIoU instead of IoU as the bounding box loss function effectively addresses the issue of mismatch between real and predicted boxes, leading to accelerated network convergence and improved performance during model training. After training and testing on the VisDrone 2019 dataset, this method effectively detects small objects in complex environments. The DM-YOLOX model shows a significant improvement of 2.7% in mAP compared to the baseline network, while achieving an 8% increase in frames per second (FPS).
doi_str_mv 10.1007/s11227-024-05944-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3064674539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064674539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-99aa89e6e5a485c2f12895c7b2bd49d73a7ca2463be2152cdf57dea410621dfe3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwBzhF4mxYv-L4iMpbRb2ABCfLcTY0VZsU24Xy7wmkEjdOM9LOzEofIacMzhmAvoiMca4pcElBGSnpdo-MmNKCgizkPhmB4UALJfkhOYpxAQBSaDEiD1eP9HU2nb1kDkPjlllXLtCnrMLUS9O12QrTvKuyzybNs6ZN2MbmAzOXere7-7lrm7g6Jge1W0Y82emYPN9cP03u6HR2ez-5nFLPNSRqjHOFwRyVk4XyvGa8MMrrkpeVNJUWTnvHZS5K5ExxX9VKV-gkg5yzqkYxJmfD7jp07xuMyS66TWj7l1ZALnMtlTB9ig8pH7oYA9Z2HZqVC1-Wgf1hZgdmtmdmf5nZbV8SQyn24fYNw9_0P61vPWBvsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064674539</pqid></control><display><type>article</type><title>DM-YOLOX aerial object detection method with intensive attention mechanism</title><source>Springer Nature - Complete Springer Journals</source><creator>Li, Xiangyu ; Wang, Fengping ; Wang, Wei ; Han, Yanjiang ; Zhang, Jianyang</creator><creatorcontrib>Li, Xiangyu ; Wang, Fengping ; Wang, Wei ; Han, Yanjiang ; Zhang, Jianyang</creatorcontrib><description>In aerial image detection, difficulties in feature extraction and low detection accuracy arise due to background interference, occlusion, and the presence of multiple small objects. This paper proposes a DM-YOLOX aerial object target detection method with intensive attention mechanism. Firstly, the proposed approach incorporates coordinate attention (CA) and a dense connection method into the backbone network architecture, enabling adaptive channel weighting throughout the feature extraction process. This facilitates the enhancement of significant features while suppressing less relevant ones, thereby augmenting the network’s capacity to represent object features and ensuring retention and reinforcement of key features. Secondly, the multibranch extraction module (MBE) is incorporated into the feature fusion network to enhance the network’s ability in extracting multi-scale feature information from images with extensive coverage, thereby enhancing the detection accuracy and efficiency of small- and medium-sized objects in complex scenes. Finally, the utilization of SIoU instead of IoU as the bounding box loss function effectively addresses the issue of mismatch between real and predicted boxes, leading to accelerated network convergence and improved performance during model training. After training and testing on the VisDrone 2019 dataset, this method effectively detects small objects in complex environments. The DM-YOLOX model shows a significant improvement of 2.7% in mAP compared to the baseline network, while achieving an 8% increase in frames per second (FPS).</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-024-05944-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Compilers ; Computer Science ; Feature extraction ; Frames per second ; Image detection ; Image enhancement ; Interpreters ; Object recognition ; Occlusion ; Processor Architectures ; Programming Languages ; Target detection</subject><ispartof>The Journal of supercomputing, 2024-06, Vol.80 (9), p.12790-12812</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-99aa89e6e5a485c2f12895c7b2bd49d73a7ca2463be2152cdf57dea410621dfe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-024-05944-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-024-05944-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Xiangyu</creatorcontrib><creatorcontrib>Wang, Fengping</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Han, Yanjiang</creatorcontrib><creatorcontrib>Zhang, Jianyang</creatorcontrib><title>DM-YOLOX aerial object detection method with intensive attention mechanism</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>In aerial image detection, difficulties in feature extraction and low detection accuracy arise due to background interference, occlusion, and the presence of multiple small objects. This paper proposes a DM-YOLOX aerial object target detection method with intensive attention mechanism. Firstly, the proposed approach incorporates coordinate attention (CA) and a dense connection method into the backbone network architecture, enabling adaptive channel weighting throughout the feature extraction process. This facilitates the enhancement of significant features while suppressing less relevant ones, thereby augmenting the network’s capacity to represent object features and ensuring retention and reinforcement of key features. Secondly, the multibranch extraction module (MBE) is incorporated into the feature fusion network to enhance the network’s ability in extracting multi-scale feature information from images with extensive coverage, thereby enhancing the detection accuracy and efficiency of small- and medium-sized objects in complex scenes. Finally, the utilization of SIoU instead of IoU as the bounding box loss function effectively addresses the issue of mismatch between real and predicted boxes, leading to accelerated network convergence and improved performance during model training. After training and testing on the VisDrone 2019 dataset, this method effectively detects small objects in complex environments. The DM-YOLOX model shows a significant improvement of 2.7% in mAP compared to the baseline network, while achieving an 8% increase in frames per second (FPS).</description><subject>Compilers</subject><subject>Computer Science</subject><subject>Feature extraction</subject><subject>Frames per second</subject><subject>Image detection</subject><subject>Image enhancement</subject><subject>Interpreters</subject><subject>Object recognition</subject><subject>Occlusion</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Target detection</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwBzhF4mxYv-L4iMpbRb2ABCfLcTY0VZsU24Xy7wmkEjdOM9LOzEofIacMzhmAvoiMca4pcElBGSnpdo-MmNKCgizkPhmB4UALJfkhOYpxAQBSaDEiD1eP9HU2nb1kDkPjlllXLtCnrMLUS9O12QrTvKuyzybNs6ZN2MbmAzOXere7-7lrm7g6Jge1W0Y82emYPN9cP03u6HR2ez-5nFLPNSRqjHOFwRyVk4XyvGa8MMrrkpeVNJUWTnvHZS5K5ExxX9VKV-gkg5yzqkYxJmfD7jp07xuMyS66TWj7l1ZALnMtlTB9ig8pH7oYA9Z2HZqVC1-Wgf1hZgdmtmdmf5nZbV8SQyn24fYNw9_0P61vPWBvsw</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Li, Xiangyu</creator><creator>Wang, Fengping</creator><creator>Wang, Wei</creator><creator>Han, Yanjiang</creator><creator>Zhang, Jianyang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240601</creationdate><title>DM-YOLOX aerial object detection method with intensive attention mechanism</title><author>Li, Xiangyu ; Wang, Fengping ; Wang, Wei ; Han, Yanjiang ; Zhang, Jianyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-99aa89e6e5a485c2f12895c7b2bd49d73a7ca2463be2152cdf57dea410621dfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Compilers</topic><topic>Computer Science</topic><topic>Feature extraction</topic><topic>Frames per second</topic><topic>Image detection</topic><topic>Image enhancement</topic><topic>Interpreters</topic><topic>Object recognition</topic><topic>Occlusion</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Target detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiangyu</creatorcontrib><creatorcontrib>Wang, Fengping</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Han, Yanjiang</creatorcontrib><creatorcontrib>Zhang, Jianyang</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xiangyu</au><au>Wang, Fengping</au><au>Wang, Wei</au><au>Han, Yanjiang</au><au>Zhang, Jianyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DM-YOLOX aerial object detection method with intensive attention mechanism</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>80</volume><issue>9</issue><spage>12790</spage><epage>12812</epage><pages>12790-12812</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>In aerial image detection, difficulties in feature extraction and low detection accuracy arise due to background interference, occlusion, and the presence of multiple small objects. This paper proposes a DM-YOLOX aerial object target detection method with intensive attention mechanism. Firstly, the proposed approach incorporates coordinate attention (CA) and a dense connection method into the backbone network architecture, enabling adaptive channel weighting throughout the feature extraction process. This facilitates the enhancement of significant features while suppressing less relevant ones, thereby augmenting the network’s capacity to represent object features and ensuring retention and reinforcement of key features. Secondly, the multibranch extraction module (MBE) is incorporated into the feature fusion network to enhance the network’s ability in extracting multi-scale feature information from images with extensive coverage, thereby enhancing the detection accuracy and efficiency of small- and medium-sized objects in complex scenes. Finally, the utilization of SIoU instead of IoU as the bounding box loss function effectively addresses the issue of mismatch between real and predicted boxes, leading to accelerated network convergence and improved performance during model training. After training and testing on the VisDrone 2019 dataset, this method effectively detects small objects in complex environments. The DM-YOLOX model shows a significant improvement of 2.7% in mAP compared to the baseline network, while achieving an 8% increase in frames per second (FPS).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-024-05944-x</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-8542
ispartof The Journal of supercomputing, 2024-06, Vol.80 (9), p.12790-12812
issn 0920-8542
1573-0484
language eng
recordid cdi_proquest_journals_3064674539
source Springer Nature - Complete Springer Journals
subjects Compilers
Computer Science
Feature extraction
Frames per second
Image detection
Image enhancement
Interpreters
Object recognition
Occlusion
Processor Architectures
Programming Languages
Target detection
title DM-YOLOX aerial object detection method with intensive attention mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A24%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DM-YOLOX%20aerial%20object%20detection%20method%20with%20intensive%20attention%20mechanism&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Li,%20Xiangyu&rft.date=2024-06-01&rft.volume=80&rft.issue=9&rft.spage=12790&rft.epage=12812&rft.pages=12790-12812&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-024-05944-x&rft_dat=%3Cproquest_cross%3E3064674539%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064674539&rft_id=info:pmid/&rfr_iscdi=true