DM-YOLOX aerial object detection method with intensive attention mechanism
In aerial image detection, difficulties in feature extraction and low detection accuracy arise due to background interference, occlusion, and the presence of multiple small objects. This paper proposes a DM-YOLOX aerial object target detection method with intensive attention mechanism. Firstly, the...
Gespeichert in:
Veröffentlicht in: | The Journal of supercomputing 2024-06, Vol.80 (9), p.12790-12812 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12812 |
---|---|
container_issue | 9 |
container_start_page | 12790 |
container_title | The Journal of supercomputing |
container_volume | 80 |
creator | Li, Xiangyu Wang, Fengping Wang, Wei Han, Yanjiang Zhang, Jianyang |
description | In aerial image detection, difficulties in feature extraction and low detection accuracy arise due to background interference, occlusion, and the presence of multiple small objects. This paper proposes a DM-YOLOX aerial object target detection method with intensive attention mechanism. Firstly, the proposed approach incorporates coordinate attention (CA) and a dense connection method into the backbone network architecture, enabling adaptive channel weighting throughout the feature extraction process. This facilitates the enhancement of significant features while suppressing less relevant ones, thereby augmenting the network’s capacity to represent object features and ensuring retention and reinforcement of key features. Secondly, the multibranch extraction module (MBE) is incorporated into the feature fusion network to enhance the network’s ability in extracting multi-scale feature information from images with extensive coverage, thereby enhancing the detection accuracy and efficiency of small- and medium-sized objects in complex scenes. Finally, the utilization of SIoU instead of IoU as the bounding box loss function effectively addresses the issue of mismatch between real and predicted boxes, leading to accelerated network convergence and improved performance during model training. After training and testing on the VisDrone 2019 dataset, this method effectively detects small objects in complex environments. The DM-YOLOX model shows a significant improvement of 2.7% in mAP compared to the baseline network, while achieving an 8% increase in frames per second (FPS). |
doi_str_mv | 10.1007/s11227-024-05944-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3064674539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064674539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-99aa89e6e5a485c2f12895c7b2bd49d73a7ca2463be2152cdf57dea410621dfe3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwBzhF4mxYv-L4iMpbRb2ABCfLcTY0VZsU24Xy7wmkEjdOM9LOzEofIacMzhmAvoiMca4pcElBGSnpdo-MmNKCgizkPhmB4UALJfkhOYpxAQBSaDEiD1eP9HU2nb1kDkPjlllXLtCnrMLUS9O12QrTvKuyzybNs6ZN2MbmAzOXere7-7lrm7g6Jge1W0Y82emYPN9cP03u6HR2ez-5nFLPNSRqjHOFwRyVk4XyvGa8MMrrkpeVNJUWTnvHZS5K5ExxX9VKV-gkg5yzqkYxJmfD7jp07xuMyS66TWj7l1ZALnMtlTB9ig8pH7oYA9Z2HZqVC1-Wgf1hZgdmtmdmf5nZbV8SQyn24fYNw9_0P61vPWBvsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064674539</pqid></control><display><type>article</type><title>DM-YOLOX aerial object detection method with intensive attention mechanism</title><source>Springer Nature - Complete Springer Journals</source><creator>Li, Xiangyu ; Wang, Fengping ; Wang, Wei ; Han, Yanjiang ; Zhang, Jianyang</creator><creatorcontrib>Li, Xiangyu ; Wang, Fengping ; Wang, Wei ; Han, Yanjiang ; Zhang, Jianyang</creatorcontrib><description>In aerial image detection, difficulties in feature extraction and low detection accuracy arise due to background interference, occlusion, and the presence of multiple small objects. This paper proposes a DM-YOLOX aerial object target detection method with intensive attention mechanism. Firstly, the proposed approach incorporates coordinate attention (CA) and a dense connection method into the backbone network architecture, enabling adaptive channel weighting throughout the feature extraction process. This facilitates the enhancement of significant features while suppressing less relevant ones, thereby augmenting the network’s capacity to represent object features and ensuring retention and reinforcement of key features. Secondly, the multibranch extraction module (MBE) is incorporated into the feature fusion network to enhance the network’s ability in extracting multi-scale feature information from images with extensive coverage, thereby enhancing the detection accuracy and efficiency of small- and medium-sized objects in complex scenes. Finally, the utilization of SIoU instead of IoU as the bounding box loss function effectively addresses the issue of mismatch between real and predicted boxes, leading to accelerated network convergence and improved performance during model training. After training and testing on the VisDrone 2019 dataset, this method effectively detects small objects in complex environments. The DM-YOLOX model shows a significant improvement of 2.7% in mAP compared to the baseline network, while achieving an 8% increase in frames per second (FPS).</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-024-05944-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Compilers ; Computer Science ; Feature extraction ; Frames per second ; Image detection ; Image enhancement ; Interpreters ; Object recognition ; Occlusion ; Processor Architectures ; Programming Languages ; Target detection</subject><ispartof>The Journal of supercomputing, 2024-06, Vol.80 (9), p.12790-12812</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-99aa89e6e5a485c2f12895c7b2bd49d73a7ca2463be2152cdf57dea410621dfe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-024-05944-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-024-05944-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Xiangyu</creatorcontrib><creatorcontrib>Wang, Fengping</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Han, Yanjiang</creatorcontrib><creatorcontrib>Zhang, Jianyang</creatorcontrib><title>DM-YOLOX aerial object detection method with intensive attention mechanism</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>In aerial image detection, difficulties in feature extraction and low detection accuracy arise due to background interference, occlusion, and the presence of multiple small objects. This paper proposes a DM-YOLOX aerial object target detection method with intensive attention mechanism. Firstly, the proposed approach incorporates coordinate attention (CA) and a dense connection method into the backbone network architecture, enabling adaptive channel weighting throughout the feature extraction process. This facilitates the enhancement of significant features while suppressing less relevant ones, thereby augmenting the network’s capacity to represent object features and ensuring retention and reinforcement of key features. Secondly, the multibranch extraction module (MBE) is incorporated into the feature fusion network to enhance the network’s ability in extracting multi-scale feature information from images with extensive coverage, thereby enhancing the detection accuracy and efficiency of small- and medium-sized objects in complex scenes. Finally, the utilization of SIoU instead of IoU as the bounding box loss function effectively addresses the issue of mismatch between real and predicted boxes, leading to accelerated network convergence and improved performance during model training. After training and testing on the VisDrone 2019 dataset, this method effectively detects small objects in complex environments. The DM-YOLOX model shows a significant improvement of 2.7% in mAP compared to the baseline network, while achieving an 8% increase in frames per second (FPS).</description><subject>Compilers</subject><subject>Computer Science</subject><subject>Feature extraction</subject><subject>Frames per second</subject><subject>Image detection</subject><subject>Image enhancement</subject><subject>Interpreters</subject><subject>Object recognition</subject><subject>Occlusion</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Target detection</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwBzhF4mxYv-L4iMpbRb2ABCfLcTY0VZsU24Xy7wmkEjdOM9LOzEofIacMzhmAvoiMca4pcElBGSnpdo-MmNKCgizkPhmB4UALJfkhOYpxAQBSaDEiD1eP9HU2nb1kDkPjlllXLtCnrMLUS9O12QrTvKuyzybNs6ZN2MbmAzOXere7-7lrm7g6Jge1W0Y82emYPN9cP03u6HR2ez-5nFLPNSRqjHOFwRyVk4XyvGa8MMrrkpeVNJUWTnvHZS5K5ExxX9VKV-gkg5yzqkYxJmfD7jp07xuMyS66TWj7l1ZALnMtlTB9ig8pH7oYA9Z2HZqVC1-Wgf1hZgdmtmdmf5nZbV8SQyn24fYNw9_0P61vPWBvsw</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Li, Xiangyu</creator><creator>Wang, Fengping</creator><creator>Wang, Wei</creator><creator>Han, Yanjiang</creator><creator>Zhang, Jianyang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240601</creationdate><title>DM-YOLOX aerial object detection method with intensive attention mechanism</title><author>Li, Xiangyu ; Wang, Fengping ; Wang, Wei ; Han, Yanjiang ; Zhang, Jianyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-99aa89e6e5a485c2f12895c7b2bd49d73a7ca2463be2152cdf57dea410621dfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Compilers</topic><topic>Computer Science</topic><topic>Feature extraction</topic><topic>Frames per second</topic><topic>Image detection</topic><topic>Image enhancement</topic><topic>Interpreters</topic><topic>Object recognition</topic><topic>Occlusion</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Target detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiangyu</creatorcontrib><creatorcontrib>Wang, Fengping</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Han, Yanjiang</creatorcontrib><creatorcontrib>Zhang, Jianyang</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xiangyu</au><au>Wang, Fengping</au><au>Wang, Wei</au><au>Han, Yanjiang</au><au>Zhang, Jianyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DM-YOLOX aerial object detection method with intensive attention mechanism</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>80</volume><issue>9</issue><spage>12790</spage><epage>12812</epage><pages>12790-12812</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>In aerial image detection, difficulties in feature extraction and low detection accuracy arise due to background interference, occlusion, and the presence of multiple small objects. This paper proposes a DM-YOLOX aerial object target detection method with intensive attention mechanism. Firstly, the proposed approach incorporates coordinate attention (CA) and a dense connection method into the backbone network architecture, enabling adaptive channel weighting throughout the feature extraction process. This facilitates the enhancement of significant features while suppressing less relevant ones, thereby augmenting the network’s capacity to represent object features and ensuring retention and reinforcement of key features. Secondly, the multibranch extraction module (MBE) is incorporated into the feature fusion network to enhance the network’s ability in extracting multi-scale feature information from images with extensive coverage, thereby enhancing the detection accuracy and efficiency of small- and medium-sized objects in complex scenes. Finally, the utilization of SIoU instead of IoU as the bounding box loss function effectively addresses the issue of mismatch between real and predicted boxes, leading to accelerated network convergence and improved performance during model training. After training and testing on the VisDrone 2019 dataset, this method effectively detects small objects in complex environments. The DM-YOLOX model shows a significant improvement of 2.7% in mAP compared to the baseline network, while achieving an 8% increase in frames per second (FPS).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-024-05944-x</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-8542 |
ispartof | The Journal of supercomputing, 2024-06, Vol.80 (9), p.12790-12812 |
issn | 0920-8542 1573-0484 |
language | eng |
recordid | cdi_proquest_journals_3064674539 |
source | Springer Nature - Complete Springer Journals |
subjects | Compilers Computer Science Feature extraction Frames per second Image detection Image enhancement Interpreters Object recognition Occlusion Processor Architectures Programming Languages Target detection |
title | DM-YOLOX aerial object detection method with intensive attention mechanism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A24%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DM-YOLOX%20aerial%20object%20detection%20method%20with%20intensive%20attention%20mechanism&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Li,%20Xiangyu&rft.date=2024-06-01&rft.volume=80&rft.issue=9&rft.spage=12790&rft.epage=12812&rft.pages=12790-12812&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-024-05944-x&rft_dat=%3Cproquest_cross%3E3064674539%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064674539&rft_id=info:pmid/&rfr_iscdi=true |