DISEASE CATEGORIZATION WITH CLINICAL DATA USING OPTIMIZED BAT ALGORITHM AND FUZZY VALUE

In this paper, design a Bat-based Random Forest (BbRF) framework to enhance the performance of categorizing diseases with fuzzy values which also protect the privacy of the developed scheme. It involves pre-processing, attributes selection, fuzzy value generation, and classification. Additionally, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroQuantology 2022-01, Vol.20 (12), p.2006
Hauptverfasser: Naresh Patel K M, Shivkumarswamy, G M, Ashoka, K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, design a Bat-based Random Forest (BbRF) framework to enhance the performance of categorizing diseases with fuzzy values which also protect the privacy of the developed scheme. It involves pre-processing, attributes selection, fuzzy value generation, and classification. Additionally, the developed framework is implemented in Python tool and patient disease datasets are used for implementation. Moreover, pre-processing remove the error and noise, attributes are selected based on the duration of diseases. Finally, classify the patient disease based on the generated fuzzy value. To prove the efficiency of the developed framework, attained results are compared with other existing techniques in terms of accuracy, sensitivity, specificity, F-measure, and precision.
ISSN:1303-5150
DOI:10.14704/NQ.2022.20.12.NQ77174