The explicit solution of linear, dissipative, second-order initial-boundary value problems with variable coefficients

We derive explicit solution representations for linear, dissipative, second-order Initial-Boundary Value Problems (IBVPs) with coefficients that are spatially varying, with linear, constant-coefficient, two-point boundary conditions. We accomplish this by considering the variable-coefficient problem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-06
Hauptverfasser: Farkas, Matthew, Deconinck, Bernard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Farkas, Matthew
Deconinck, Bernard
description We derive explicit solution representations for linear, dissipative, second-order Initial-Boundary Value Problems (IBVPs) with coefficients that are spatially varying, with linear, constant-coefficient, two-point boundary conditions. We accomplish this by considering the variable-coefficient problem as the limit of a constant-coefficient interface problem, previously solved using the Unified Transform Method of Fokas. Our method produces an explicit representation of the solution, allowing us to determine properties of the solution directly. As explicit examples, we demonstrate the solution procedure for different IBVPs of variations of the heat equation, and the linearized complex Ginzburg-Landau (CGL) equation (periodic boundary conditions). We can use this to find the eigenvalues of dissipative second-order linear operators (including non-self-adjoint ones) as roots of a transcendental function, and we can write their eigenfunctions explicitly in terms of the eigenvalues.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3064397199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064397199</sourcerecordid><originalsourceid>FETCH-proquest_journals_30643971993</originalsourceid><addsrcrecordid>eNqNjc0KwjAQhIMgKOo7LHi1UBP_ehbFB_Ausd3SlZit2cSftzcHH8DTMPPNMAM11sYsi91K65GaidzKstSbrV6vzVilc4eA795RTRGEXYrEHrgFRx5tWEBDItTbSE9cgGDNvik4NBiAPEWyrrhy8o0NH3halxD6wFeHd4EXxS5ngWz2UDO2bX5BH2Wqhq11grOfTtT8eDjvT0XePhJKvNw4BZ_RxZSblam2y6oy_7W-DjZN4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064397199</pqid></control><display><type>article</type><title>The explicit solution of linear, dissipative, second-order initial-boundary value problems with variable coefficients</title><source>Free E- Journals</source><creator>Farkas, Matthew ; Deconinck, Bernard</creator><creatorcontrib>Farkas, Matthew ; Deconinck, Bernard</creatorcontrib><description>We derive explicit solution representations for linear, dissipative, second-order Initial-Boundary Value Problems (IBVPs) with coefficients that are spatially varying, with linear, constant-coefficient, two-point boundary conditions. We accomplish this by considering the variable-coefficient problem as the limit of a constant-coefficient interface problem, previously solved using the Unified Transform Method of Fokas. Our method produces an explicit representation of the solution, allowing us to determine properties of the solution directly. As explicit examples, we demonstrate the solution procedure for different IBVPs of variations of the heat equation, and the linearized complex Ginzburg-Landau (CGL) equation (periodic boundary conditions). We can use this to find the eigenvalues of dissipative second-order linear operators (including non-self-adjoint ones) as roots of a transcendental function, and we can write their eigenfunctions explicitly in terms of the eigenvalues.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Boundary conditions ; Boundary value problems ; Coefficients ; Dissipation ; Eigenvalues ; Eigenvectors ; Linear operators ; Representations ; Thermodynamics ; Transcendental functions</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Farkas, Matthew</creatorcontrib><creatorcontrib>Deconinck, Bernard</creatorcontrib><title>The explicit solution of linear, dissipative, second-order initial-boundary value problems with variable coefficients</title><title>arXiv.org</title><description>We derive explicit solution representations for linear, dissipative, second-order Initial-Boundary Value Problems (IBVPs) with coefficients that are spatially varying, with linear, constant-coefficient, two-point boundary conditions. We accomplish this by considering the variable-coefficient problem as the limit of a constant-coefficient interface problem, previously solved using the Unified Transform Method of Fokas. Our method produces an explicit representation of the solution, allowing us to determine properties of the solution directly. As explicit examples, we demonstrate the solution procedure for different IBVPs of variations of the heat equation, and the linearized complex Ginzburg-Landau (CGL) equation (periodic boundary conditions). We can use this to find the eigenvalues of dissipative second-order linear operators (including non-self-adjoint ones) as roots of a transcendental function, and we can write their eigenfunctions explicitly in terms of the eigenvalues.</description><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Coefficients</subject><subject>Dissipation</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Linear operators</subject><subject>Representations</subject><subject>Thermodynamics</subject><subject>Transcendental functions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjc0KwjAQhIMgKOo7LHi1UBP_ehbFB_Ausd3SlZit2cSftzcHH8DTMPPNMAM11sYsi91K65GaidzKstSbrV6vzVilc4eA795RTRGEXYrEHrgFRx5tWEBDItTbSE9cgGDNvik4NBiAPEWyrrhy8o0NH3halxD6wFeHd4EXxS5ngWz2UDO2bX5BH2Wqhq11grOfTtT8eDjvT0XePhJKvNw4BZ_RxZSblam2y6oy_7W-DjZN4g</recordid><startdate>20240603</startdate><enddate>20240603</enddate><creator>Farkas, Matthew</creator><creator>Deconinck, Bernard</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240603</creationdate><title>The explicit solution of linear, dissipative, second-order initial-boundary value problems with variable coefficients</title><author>Farkas, Matthew ; Deconinck, Bernard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30643971993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Coefficients</topic><topic>Dissipation</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Linear operators</topic><topic>Representations</topic><topic>Thermodynamics</topic><topic>Transcendental functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Farkas, Matthew</creatorcontrib><creatorcontrib>Deconinck, Bernard</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farkas, Matthew</au><au>Deconinck, Bernard</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The explicit solution of linear, dissipative, second-order initial-boundary value problems with variable coefficients</atitle><jtitle>arXiv.org</jtitle><date>2024-06-03</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We derive explicit solution representations for linear, dissipative, second-order Initial-Boundary Value Problems (IBVPs) with coefficients that are spatially varying, with linear, constant-coefficient, two-point boundary conditions. We accomplish this by considering the variable-coefficient problem as the limit of a constant-coefficient interface problem, previously solved using the Unified Transform Method of Fokas. Our method produces an explicit representation of the solution, allowing us to determine properties of the solution directly. As explicit examples, we demonstrate the solution procedure for different IBVPs of variations of the heat equation, and the linearized complex Ginzburg-Landau (CGL) equation (periodic boundary conditions). We can use this to find the eigenvalues of dissipative second-order linear operators (including non-self-adjoint ones) as roots of a transcendental function, and we can write their eigenfunctions explicitly in terms of the eigenvalues.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_3064397199
source Free E- Journals
subjects Boundary conditions
Boundary value problems
Coefficients
Dissipation
Eigenvalues
Eigenvectors
Linear operators
Representations
Thermodynamics
Transcendental functions
title The explicit solution of linear, dissipative, second-order initial-boundary value problems with variable coefficients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A16%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20explicit%20solution%20of%20linear,%20dissipative,%20second-order%20initial-boundary%20value%20problems%20with%20variable%20coefficients&rft.jtitle=arXiv.org&rft.au=Farkas,%20Matthew&rft.date=2024-06-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3064397199%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064397199&rft_id=info:pmid/&rfr_iscdi=true