From Structured to Unstructured:A Comparative Analysis of Computer Vision and Graph Models in solving Mesh-based PDEs
This article investigates the application of computer vision and graph-based models in solving mesh-based partial differential equations within high-performance computing environments. Focusing on structured, graded structured, and unstructured meshes, the study compares the performance and computat...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-05 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article investigates the application of computer vision and graph-based models in solving mesh-based partial differential equations within high-performance computing environments. Focusing on structured, graded structured, and unstructured meshes, the study compares the performance and computational efficiency of three computer vision-based models against three graph-based models across three data\-sets. The research aims to identify the most suitable models for different mesh topographies, particularly highlighting the exploration of graded meshes, a less studied area. Results demonstrate that computer vision-based models, notably U-Net, outperform the graph models in prediction performance and efficiency in two (structured and graded) out of three mesh topographies. The study also reveals the unexpected effectiveness of computer vision-based models in handling unstructured meshes, suggesting a potential shift in methodological approaches for data-driven partial differential equation learning. The article underscores deep learning as a viable and potentially sustainable way to enhance traditional high-performance computing methods, advocating for informed model selection based on the topography of the mesh. |
---|---|
ISSN: | 2331-8422 |