Kinematic Model of Magnetic Domain Wall Motion for Fast, High-Accuracy Simulations
Domain wall (DW) devices have garnered recent interest for diverse applications including memory, logic, and neuromorphic primitives; fast, accurate device models are therefore imperative for large-scale system design and verification. Extant DW motion models are sub-optimal for large-scale system d...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-05 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Doleh, Kristi Humphrey, Leonard Linseisen, Chandler M Kitcher, Michael D Martin, Joanna M Cui, Can Incorvia, Jean Anne C Garcia-Sanchez, Felipe Naimul Hassan Edwards, Alexander J Friedman, Joseph S |
description | Domain wall (DW) devices have garnered recent interest for diverse applications including memory, logic, and neuromorphic primitives; fast, accurate device models are therefore imperative for large-scale system design and verification. Extant DW motion models are sub-optimal for large-scale system design either over-consuming compute resources with physics-heavy equations or oversimplifying the physics, drastically reducing model accuracy. We propose a DW model inspired by the phenomenological similarities between motions of a DW and a classical object being acted on by forces like air resistance or static friction. Our proposed phenomenological model predicts DW motion within 1.2% on average compared with micromagnetic simulations that are 400 times slower. Additionally our model is seven times faster than extant collective coordinate models and 14 times more accurate than extant hyper-reduced models making it an essential tool for large-scale DW circuit design and simulation. The model is publicly posted along with scripts that automatically extract model parameters from user-provided simulation or experimental data to extend the model to alternative micromagnetic parameters. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3064393282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064393282</sourcerecordid><originalsourceid>FETCH-proquest_journals_30643932823</originalsourceid><addsrcrecordid>eNqNik8LgjAcQEcQJOV3GHRNWJuaHaMSIbpU0FF-rGmTudX-HPr2KfQBOj14701QRBlbJ0VK6QzFznWEEJpvaJaxCF1OUosevOT4bB5CYdPgM7RajOZgepAa30GpoXppNG6MxSU4v8KVbJ_JjvNggX_wVfZBwbi4BZo2oJyIf5yjZXm87avkZc07COfrzgSrh1Qzkqdsy2hB2X_XF1_0Prk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064393282</pqid></control><display><type>article</type><title>Kinematic Model of Magnetic Domain Wall Motion for Fast, High-Accuracy Simulations</title><source>Free E- Journals</source><creator>Doleh, Kristi ; Humphrey, Leonard ; Linseisen, Chandler M ; Kitcher, Michael D ; Martin, Joanna M ; Cui, Can ; Incorvia, Jean Anne C ; Garcia-Sanchez, Felipe ; Naimul Hassan ; Edwards, Alexander J ; Friedman, Joseph S</creator><creatorcontrib>Doleh, Kristi ; Humphrey, Leonard ; Linseisen, Chandler M ; Kitcher, Michael D ; Martin, Joanna M ; Cui, Can ; Incorvia, Jean Anne C ; Garcia-Sanchez, Felipe ; Naimul Hassan ; Edwards, Alexander J ; Friedman, Joseph S</creatorcontrib><description>Domain wall (DW) devices have garnered recent interest for diverse applications including memory, logic, and neuromorphic primitives; fast, accurate device models are therefore imperative for large-scale system design and verification. Extant DW motion models are sub-optimal for large-scale system design either over-consuming compute resources with physics-heavy equations or oversimplifying the physics, drastically reducing model accuracy. We propose a DW model inspired by the phenomenological similarities between motions of a DW and a classical object being acted on by forces like air resistance or static friction. Our proposed phenomenological model predicts DW motion within 1.2% on average compared with micromagnetic simulations that are 400 times slower. Additionally our model is seven times faster than extant collective coordinate models and 14 times more accurate than extant hyper-reduced models making it an essential tool for large-scale DW circuit design and simulation. The model is publicly posted along with scripts that automatically extract model parameters from user-provided simulation or experimental data to extend the model to alternative micromagnetic parameters.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accuracy ; Circuit design ; Domain walls ; Kinematics ; Magnetic domains ; Parameters ; Static friction ; Systems design</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Doleh, Kristi</creatorcontrib><creatorcontrib>Humphrey, Leonard</creatorcontrib><creatorcontrib>Linseisen, Chandler M</creatorcontrib><creatorcontrib>Kitcher, Michael D</creatorcontrib><creatorcontrib>Martin, Joanna M</creatorcontrib><creatorcontrib>Cui, Can</creatorcontrib><creatorcontrib>Incorvia, Jean Anne C</creatorcontrib><creatorcontrib>Garcia-Sanchez, Felipe</creatorcontrib><creatorcontrib>Naimul Hassan</creatorcontrib><creatorcontrib>Edwards, Alexander J</creatorcontrib><creatorcontrib>Friedman, Joseph S</creatorcontrib><title>Kinematic Model of Magnetic Domain Wall Motion for Fast, High-Accuracy Simulations</title><title>arXiv.org</title><description>Domain wall (DW) devices have garnered recent interest for diverse applications including memory, logic, and neuromorphic primitives; fast, accurate device models are therefore imperative for large-scale system design and verification. Extant DW motion models are sub-optimal for large-scale system design either over-consuming compute resources with physics-heavy equations or oversimplifying the physics, drastically reducing model accuracy. We propose a DW model inspired by the phenomenological similarities between motions of a DW and a classical object being acted on by forces like air resistance or static friction. Our proposed phenomenological model predicts DW motion within 1.2% on average compared with micromagnetic simulations that are 400 times slower. Additionally our model is seven times faster than extant collective coordinate models and 14 times more accurate than extant hyper-reduced models making it an essential tool for large-scale DW circuit design and simulation. The model is publicly posted along with scripts that automatically extract model parameters from user-provided simulation or experimental data to extend the model to alternative micromagnetic parameters.</description><subject>Accuracy</subject><subject>Circuit design</subject><subject>Domain walls</subject><subject>Kinematics</subject><subject>Magnetic domains</subject><subject>Parameters</subject><subject>Static friction</subject><subject>Systems design</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNik8LgjAcQEcQJOV3GHRNWJuaHaMSIbpU0FF-rGmTudX-HPr2KfQBOj14701QRBlbJ0VK6QzFznWEEJpvaJaxCF1OUosevOT4bB5CYdPgM7RajOZgepAa30GpoXppNG6MxSU4v8KVbJ_JjvNggX_wVfZBwbi4BZo2oJyIf5yjZXm87avkZc07COfrzgSrh1Qzkqdsy2hB2X_XF1_0Prk</recordid><startdate>20240531</startdate><enddate>20240531</enddate><creator>Doleh, Kristi</creator><creator>Humphrey, Leonard</creator><creator>Linseisen, Chandler M</creator><creator>Kitcher, Michael D</creator><creator>Martin, Joanna M</creator><creator>Cui, Can</creator><creator>Incorvia, Jean Anne C</creator><creator>Garcia-Sanchez, Felipe</creator><creator>Naimul Hassan</creator><creator>Edwards, Alexander J</creator><creator>Friedman, Joseph S</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240531</creationdate><title>Kinematic Model of Magnetic Domain Wall Motion for Fast, High-Accuracy Simulations</title><author>Doleh, Kristi ; Humphrey, Leonard ; Linseisen, Chandler M ; Kitcher, Michael D ; Martin, Joanna M ; Cui, Can ; Incorvia, Jean Anne C ; Garcia-Sanchez, Felipe ; Naimul Hassan ; Edwards, Alexander J ; Friedman, Joseph S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30643932823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Circuit design</topic><topic>Domain walls</topic><topic>Kinematics</topic><topic>Magnetic domains</topic><topic>Parameters</topic><topic>Static friction</topic><topic>Systems design</topic><toplevel>online_resources</toplevel><creatorcontrib>Doleh, Kristi</creatorcontrib><creatorcontrib>Humphrey, Leonard</creatorcontrib><creatorcontrib>Linseisen, Chandler M</creatorcontrib><creatorcontrib>Kitcher, Michael D</creatorcontrib><creatorcontrib>Martin, Joanna M</creatorcontrib><creatorcontrib>Cui, Can</creatorcontrib><creatorcontrib>Incorvia, Jean Anne C</creatorcontrib><creatorcontrib>Garcia-Sanchez, Felipe</creatorcontrib><creatorcontrib>Naimul Hassan</creatorcontrib><creatorcontrib>Edwards, Alexander J</creatorcontrib><creatorcontrib>Friedman, Joseph S</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doleh, Kristi</au><au>Humphrey, Leonard</au><au>Linseisen, Chandler M</au><au>Kitcher, Michael D</au><au>Martin, Joanna M</au><au>Cui, Can</au><au>Incorvia, Jean Anne C</au><au>Garcia-Sanchez, Felipe</au><au>Naimul Hassan</au><au>Edwards, Alexander J</au><au>Friedman, Joseph S</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Kinematic Model of Magnetic Domain Wall Motion for Fast, High-Accuracy Simulations</atitle><jtitle>arXiv.org</jtitle><date>2024-05-31</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Domain wall (DW) devices have garnered recent interest for diverse applications including memory, logic, and neuromorphic primitives; fast, accurate device models are therefore imperative for large-scale system design and verification. Extant DW motion models are sub-optimal for large-scale system design either over-consuming compute resources with physics-heavy equations or oversimplifying the physics, drastically reducing model accuracy. We propose a DW model inspired by the phenomenological similarities between motions of a DW and a classical object being acted on by forces like air resistance or static friction. Our proposed phenomenological model predicts DW motion within 1.2% on average compared with micromagnetic simulations that are 400 times slower. Additionally our model is seven times faster than extant collective coordinate models and 14 times more accurate than extant hyper-reduced models making it an essential tool for large-scale DW circuit design and simulation. The model is publicly posted along with scripts that automatically extract model parameters from user-provided simulation or experimental data to extend the model to alternative micromagnetic parameters.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3064393282 |
source | Free E- Journals |
subjects | Accuracy Circuit design Domain walls Kinematics Magnetic domains Parameters Static friction Systems design |
title | Kinematic Model of Magnetic Domain Wall Motion for Fast, High-Accuracy Simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A29%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Kinematic%20Model%20of%20Magnetic%20Domain%20Wall%20Motion%20for%20Fast,%20High-Accuracy%20Simulations&rft.jtitle=arXiv.org&rft.au=Doleh,%20Kristi&rft.date=2024-05-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3064393282%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064393282&rft_id=info:pmid/&rfr_iscdi=true |