Embedding-Aligned Language Models
We propose a novel approach for training large language models (LLMs) to adhere to objectives defined within a latent embedding space. Our method leverages reinforcement learning (RL), treating a pre-trained LLM as an environment. Our embedding-aligned guided language (EAGLE) agent is trained to ite...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-10 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Tennenholtz, Guy Chow, Yinlam Hsu, Chih-Wei Shani, Lior Liang, Ethan Boutilier, Craig |
description | We propose a novel approach for training large language models (LLMs) to adhere to objectives defined within a latent embedding space. Our method leverages reinforcement learning (RL), treating a pre-trained LLM as an environment. Our embedding-aligned guided language (EAGLE) agent is trained to iteratively steer the LLM's generation towards optimal regions of the latent embedding space, w.r.t. some predefined criterion. We demonstrate the effectiveness of the EAGLE agent using the MovieLens 25M and Amazon Review datasets to surface content gaps that satisfy latent user demand. We also demonstrate the benefit of using an optimal design of a state-dependent action set to improve EAGLE's efficiency. Our work paves the way for controlled and grounded text generation using LLMs, ensuring consistency with domain-specific knowledge and data representations. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3064392638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064392638</sourcerecordid><originalsourceid>FETCH-proquest_journals_30643926383</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQdM1NSk1JycxL13XMyUzPS01R8EnMSy9NTE9V8M1PSc0p5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeGMDMxNjSyMzYwtj4lQBAAYDLSY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064392638</pqid></control><display><type>article</type><title>Embedding-Aligned Language Models</title><source>Free E- Journals</source><creator>Tennenholtz, Guy ; Chow, Yinlam ; Hsu, Chih-Wei ; Shani, Lior ; Liang, Ethan ; Boutilier, Craig</creator><creatorcontrib>Tennenholtz, Guy ; Chow, Yinlam ; Hsu, Chih-Wei ; Shani, Lior ; Liang, Ethan ; Boutilier, Craig</creatorcontrib><description>We propose a novel approach for training large language models (LLMs) to adhere to objectives defined within a latent embedding space. Our method leverages reinforcement learning (RL), treating a pre-trained LLM as an environment. Our embedding-aligned guided language (EAGLE) agent is trained to iteratively steer the LLM's generation towards optimal regions of the latent embedding space, w.r.t. some predefined criterion. We demonstrate the effectiveness of the EAGLE agent using the MovieLens 25M and Amazon Review datasets to surface content gaps that satisfy latent user demand. We also demonstrate the benefit of using an optimal design of a state-dependent action set to improve EAGLE's efficiency. Our work paves the way for controlled and grounded text generation using LLMs, ensuring consistency with domain-specific knowledge and data representations.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Embedding ; Knowledge representation ; Large language models</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Tennenholtz, Guy</creatorcontrib><creatorcontrib>Chow, Yinlam</creatorcontrib><creatorcontrib>Hsu, Chih-Wei</creatorcontrib><creatorcontrib>Shani, Lior</creatorcontrib><creatorcontrib>Liang, Ethan</creatorcontrib><creatorcontrib>Boutilier, Craig</creatorcontrib><title>Embedding-Aligned Language Models</title><title>arXiv.org</title><description>We propose a novel approach for training large language models (LLMs) to adhere to objectives defined within a latent embedding space. Our method leverages reinforcement learning (RL), treating a pre-trained LLM as an environment. Our embedding-aligned guided language (EAGLE) agent is trained to iteratively steer the LLM's generation towards optimal regions of the latent embedding space, w.r.t. some predefined criterion. We demonstrate the effectiveness of the EAGLE agent using the MovieLens 25M and Amazon Review datasets to surface content gaps that satisfy latent user demand. We also demonstrate the benefit of using an optimal design of a state-dependent action set to improve EAGLE's efficiency. Our work paves the way for controlled and grounded text generation using LLMs, ensuring consistency with domain-specific knowledge and data representations.</description><subject>Embedding</subject><subject>Knowledge representation</subject><subject>Large language models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQdM1NSk1JycxL13XMyUzPS01R8EnMSy9NTE9V8M1PSc0p5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeGMDMxNjSyMzYwtj4lQBAAYDLSY</recordid><startdate>20241028</startdate><enddate>20241028</enddate><creator>Tennenholtz, Guy</creator><creator>Chow, Yinlam</creator><creator>Hsu, Chih-Wei</creator><creator>Shani, Lior</creator><creator>Liang, Ethan</creator><creator>Boutilier, Craig</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241028</creationdate><title>Embedding-Aligned Language Models</title><author>Tennenholtz, Guy ; Chow, Yinlam ; Hsu, Chih-Wei ; Shani, Lior ; Liang, Ethan ; Boutilier, Craig</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30643926383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Embedding</topic><topic>Knowledge representation</topic><topic>Large language models</topic><toplevel>online_resources</toplevel><creatorcontrib>Tennenholtz, Guy</creatorcontrib><creatorcontrib>Chow, Yinlam</creatorcontrib><creatorcontrib>Hsu, Chih-Wei</creatorcontrib><creatorcontrib>Shani, Lior</creatorcontrib><creatorcontrib>Liang, Ethan</creatorcontrib><creatorcontrib>Boutilier, Craig</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tennenholtz, Guy</au><au>Chow, Yinlam</au><au>Hsu, Chih-Wei</au><au>Shani, Lior</au><au>Liang, Ethan</au><au>Boutilier, Craig</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Embedding-Aligned Language Models</atitle><jtitle>arXiv.org</jtitle><date>2024-10-28</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We propose a novel approach for training large language models (LLMs) to adhere to objectives defined within a latent embedding space. Our method leverages reinforcement learning (RL), treating a pre-trained LLM as an environment. Our embedding-aligned guided language (EAGLE) agent is trained to iteratively steer the LLM's generation towards optimal regions of the latent embedding space, w.r.t. some predefined criterion. We demonstrate the effectiveness of the EAGLE agent using the MovieLens 25M and Amazon Review datasets to surface content gaps that satisfy latent user demand. We also demonstrate the benefit of using an optimal design of a state-dependent action set to improve EAGLE's efficiency. Our work paves the way for controlled and grounded text generation using LLMs, ensuring consistency with domain-specific knowledge and data representations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3064392638 |
source | Free E- Journals |
subjects | Embedding Knowledge representation Large language models |
title | Embedding-Aligned Language Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A37%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Embedding-Aligned%20Language%20Models&rft.jtitle=arXiv.org&rft.au=Tennenholtz,%20Guy&rft.date=2024-10-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3064392638%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064392638&rft_id=info:pmid/&rfr_iscdi=true |