Comparative analysis of nondimensionalization approaches for solving the 2‐D differentially heated cavity problem

This work reports a numerical study on the effect of three nondimensionalization approaches that are commonly used to solve the classic problem of the 2‐D differentially heated cavity. The governing equations were discretized using orthogonal collocation with Legendre polynomials, and the resulting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in fluids 2024-07, Vol.96 (7), p.1276-1303
Hauptverfasser: Molina‐Herrera, F. I., Quemada‐Villagómez, L. I., Navarrete‐Bolaños, J. L., Jiménez‐Islas, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1303
container_issue 7
container_start_page 1276
container_title International journal for numerical methods in fluids
container_volume 96
creator Molina‐Herrera, F. I.
Quemada‐Villagómez, L. I.
Navarrete‐Bolaños, J. L.
Jiménez‐Islas, H.
description This work reports a numerical study on the effect of three nondimensionalization approaches that are commonly used to solve the classic problem of the 2‐D differentially heated cavity. The governing equations were discretized using orthogonal collocation with Legendre polynomials, and the resulting algebraic system was solved via Newton–Raphson method with LU factorization. The simulations were performed for Rayleigh numbers between 10 3 and 10 8 , considering the Prandtl number equal to 0.71 and a geometric aspect ratio equal to 1, analyzing the convergence and the computation time on the flow lines, isotherms and the Nusselt number. The mesh size that provides independent results was 51 × 51. Approach II was the most suitable for the nondimensionalization of the differentially heated cavity problem.
doi_str_mv 10.1002/fld.5285
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3064352093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064352093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c216t-1fd63147be8b89b6b46b58a1f277139d32c9cb31e800fcee07bb5e22f3c55d5f3</originalsourceid><addsrcrecordid>eNotkMtKAzEUhoMoWC_gIwTcuJl6kjRzWUq9QsGNrockc2JTZiZjMi2MKx_BZ_RJTKmrAz_fOT_nI-SKwZwB8FvbNnPJS3lEZgyqIgORi2MyA16wjEPFTslZjBsAqHgpZiQufTeooEa3Q6p61U7RReot7X3fuA776HxK3VcifE_VMASvzBojtT7Q6Nud6z_ouEbKf79_7mnjrMWA_ehU2050jWrEhhq1c-NE065usbsgJ1a1ES__5zl5f3x4Wz5nq9enl-XdKjOc5WPGbJMLtig0lrqsdK4XuZalYpYXBRNVI7ipjBYMSwBrEKHQWiLnVhgpG2nFObk-3E29n1uMY73x25C-ibWAfCFk8iESdXOgTPAxBrT1EFynwlQzqPdK66S03isVf92lbMI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064352093</pqid></control><display><type>article</type><title>Comparative analysis of nondimensionalization approaches for solving the 2‐D differentially heated cavity problem</title><source>Wiley Journals Collection</source><creator>Molina‐Herrera, F. I. ; Quemada‐Villagómez, L. I. ; Navarrete‐Bolaños, J. L. ; Jiménez‐Islas, H.</creator><creatorcontrib>Molina‐Herrera, F. I. ; Quemada‐Villagómez, L. I. ; Navarrete‐Bolaños, J. L. ; Jiménez‐Islas, H.</creatorcontrib><description>This work reports a numerical study on the effect of three nondimensionalization approaches that are commonly used to solve the classic problem of the 2‐D differentially heated cavity. The governing equations were discretized using orthogonal collocation with Legendre polynomials, and the resulting algebraic system was solved via Newton–Raphson method with LU factorization. The simulations were performed for Rayleigh numbers between 10 3 and 10 8 , considering the Prandtl number equal to 0.71 and a geometric aspect ratio equal to 1, analyzing the convergence and the computation time on the flow lines, isotherms and the Nusselt number. The mesh size that provides independent results was 51 × 51. Approach II was the most suitable for the nondimensionalization of the differentially heated cavity problem.</description><identifier>ISSN: 0271-2091</identifier><identifier>EISSN: 1097-0363</identifier><identifier>DOI: 10.1002/fld.5285</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Aspect ratio ; Comparative analysis ; Computation ; Fluid flow ; Newton-Raphson method ; Polynomials ; Prandtl number</subject><ispartof>International journal for numerical methods in fluids, 2024-07, Vol.96 (7), p.1276-1303</ispartof><rights>2024 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c216t-1fd63147be8b89b6b46b58a1f277139d32c9cb31e800fcee07bb5e22f3c55d5f3</cites><orcidid>0000-0002-1084-5520</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Molina‐Herrera, F. I.</creatorcontrib><creatorcontrib>Quemada‐Villagómez, L. I.</creatorcontrib><creatorcontrib>Navarrete‐Bolaños, J. L.</creatorcontrib><creatorcontrib>Jiménez‐Islas, H.</creatorcontrib><title>Comparative analysis of nondimensionalization approaches for solving the 2‐D differentially heated cavity problem</title><title>International journal for numerical methods in fluids</title><description>This work reports a numerical study on the effect of three nondimensionalization approaches that are commonly used to solve the classic problem of the 2‐D differentially heated cavity. The governing equations were discretized using orthogonal collocation with Legendre polynomials, and the resulting algebraic system was solved via Newton–Raphson method with LU factorization. The simulations were performed for Rayleigh numbers between 10 3 and 10 8 , considering the Prandtl number equal to 0.71 and a geometric aspect ratio equal to 1, analyzing the convergence and the computation time on the flow lines, isotherms and the Nusselt number. The mesh size that provides independent results was 51 × 51. Approach II was the most suitable for the nondimensionalization of the differentially heated cavity problem.</description><subject>Aspect ratio</subject><subject>Comparative analysis</subject><subject>Computation</subject><subject>Fluid flow</subject><subject>Newton-Raphson method</subject><subject>Polynomials</subject><subject>Prandtl number</subject><issn>0271-2091</issn><issn>1097-0363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkMtKAzEUhoMoWC_gIwTcuJl6kjRzWUq9QsGNrockc2JTZiZjMi2MKx_BZ_RJTKmrAz_fOT_nI-SKwZwB8FvbNnPJS3lEZgyqIgORi2MyA16wjEPFTslZjBsAqHgpZiQufTeooEa3Q6p61U7RReot7X3fuA776HxK3VcifE_VMASvzBojtT7Q6Nud6z_ouEbKf79_7mnjrMWA_ehU2050jWrEhhq1c-NE065usbsgJ1a1ES__5zl5f3x4Wz5nq9enl-XdKjOc5WPGbJMLtig0lrqsdK4XuZalYpYXBRNVI7ipjBYMSwBrEKHQWiLnVhgpG2nFObk-3E29n1uMY73x25C-ibWAfCFk8iESdXOgTPAxBrT1EFynwlQzqPdK66S03isVf92lbMI</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Molina‐Herrera, F. I.</creator><creator>Quemada‐Villagómez, L. I.</creator><creator>Navarrete‐Bolaños, J. L.</creator><creator>Jiménez‐Islas, H.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1084-5520</orcidid></search><sort><creationdate>20240701</creationdate><title>Comparative analysis of nondimensionalization approaches for solving the 2‐D differentially heated cavity problem</title><author>Molina‐Herrera, F. I. ; Quemada‐Villagómez, L. I. ; Navarrete‐Bolaños, J. L. ; Jiménez‐Islas, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c216t-1fd63147be8b89b6b46b58a1f277139d32c9cb31e800fcee07bb5e22f3c55d5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aspect ratio</topic><topic>Comparative analysis</topic><topic>Computation</topic><topic>Fluid flow</topic><topic>Newton-Raphson method</topic><topic>Polynomials</topic><topic>Prandtl number</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molina‐Herrera, F. I.</creatorcontrib><creatorcontrib>Quemada‐Villagómez, L. I.</creatorcontrib><creatorcontrib>Navarrete‐Bolaños, J. L.</creatorcontrib><creatorcontrib>Jiménez‐Islas, H.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Molina‐Herrera, F. I.</au><au>Quemada‐Villagómez, L. I.</au><au>Navarrete‐Bolaños, J. L.</au><au>Jiménez‐Islas, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative analysis of nondimensionalization approaches for solving the 2‐D differentially heated cavity problem</atitle><jtitle>International journal for numerical methods in fluids</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>96</volume><issue>7</issue><spage>1276</spage><epage>1303</epage><pages>1276-1303</pages><issn>0271-2091</issn><eissn>1097-0363</eissn><abstract>This work reports a numerical study on the effect of three nondimensionalization approaches that are commonly used to solve the classic problem of the 2‐D differentially heated cavity. The governing equations were discretized using orthogonal collocation with Legendre polynomials, and the resulting algebraic system was solved via Newton–Raphson method with LU factorization. The simulations were performed for Rayleigh numbers between 10 3 and 10 8 , considering the Prandtl number equal to 0.71 and a geometric aspect ratio equal to 1, analyzing the convergence and the computation time on the flow lines, isotherms and the Nusselt number. The mesh size that provides independent results was 51 × 51. Approach II was the most suitable for the nondimensionalization of the differentially heated cavity problem.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/fld.5285</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-1084-5520</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0271-2091
ispartof International journal for numerical methods in fluids, 2024-07, Vol.96 (7), p.1276-1303
issn 0271-2091
1097-0363
language eng
recordid cdi_proquest_journals_3064352093
source Wiley Journals Collection
subjects Aspect ratio
Comparative analysis
Computation
Fluid flow
Newton-Raphson method
Polynomials
Prandtl number
title Comparative analysis of nondimensionalization approaches for solving the 2‐D differentially heated cavity problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A04%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20analysis%20of%20nondimensionalization%20approaches%20for%20solving%20the%202%E2%80%90D%20differentially%20heated%20cavity%20problem&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20fluids&rft.au=Molina%E2%80%90Herrera,%20F.%20I.&rft.date=2024-07-01&rft.volume=96&rft.issue=7&rft.spage=1276&rft.epage=1303&rft.pages=1276-1303&rft.issn=0271-2091&rft.eissn=1097-0363&rft_id=info:doi/10.1002/fld.5285&rft_dat=%3Cproquest_cross%3E3064352093%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064352093&rft_id=info:pmid/&rfr_iscdi=true