Comparative analysis of nondimensionalization approaches for solving the 2‐D differentially heated cavity problem
This work reports a numerical study on the effect of three nondimensionalization approaches that are commonly used to solve the classic problem of the 2‐D differentially heated cavity. The governing equations were discretized using orthogonal collocation with Legendre polynomials, and the resulting...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in fluids 2024-07, Vol.96 (7), p.1276-1303 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1303 |
---|---|
container_issue | 7 |
container_start_page | 1276 |
container_title | International journal for numerical methods in fluids |
container_volume | 96 |
creator | Molina‐Herrera, F. I. Quemada‐Villagómez, L. I. Navarrete‐Bolaños, J. L. Jiménez‐Islas, H. |
description | This work reports a numerical study on the effect of three nondimensionalization approaches that are commonly used to solve the classic problem of the 2‐D differentially heated cavity. The governing equations were discretized using orthogonal collocation with Legendre polynomials, and the resulting algebraic system was solved via Newton–Raphson method with LU factorization. The simulations were performed for Rayleigh numbers between 10
3
and 10
8
, considering the Prandtl number equal to 0.71 and a geometric aspect ratio equal to 1, analyzing the convergence and the computation time on the flow lines, isotherms and the Nusselt number. The mesh size that provides independent results was 51 × 51. Approach II was the most suitable for the nondimensionalization of the differentially heated cavity problem. |
doi_str_mv | 10.1002/fld.5285 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3064352093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064352093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c216t-1fd63147be8b89b6b46b58a1f277139d32c9cb31e800fcee07bb5e22f3c55d5f3</originalsourceid><addsrcrecordid>eNotkMtKAzEUhoMoWC_gIwTcuJl6kjRzWUq9QsGNrockc2JTZiZjMi2MKx_BZ_RJTKmrAz_fOT_nI-SKwZwB8FvbNnPJS3lEZgyqIgORi2MyA16wjEPFTslZjBsAqHgpZiQufTeooEa3Q6p61U7RReot7X3fuA776HxK3VcifE_VMASvzBojtT7Q6Nud6z_ouEbKf79_7mnjrMWA_ehU2050jWrEhhq1c-NE065usbsgJ1a1ES__5zl5f3x4Wz5nq9enl-XdKjOc5WPGbJMLtig0lrqsdK4XuZalYpYXBRNVI7ipjBYMSwBrEKHQWiLnVhgpG2nFObk-3E29n1uMY73x25C-ibWAfCFk8iESdXOgTPAxBrT1EFynwlQzqPdK66S03isVf92lbMI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064352093</pqid></control><display><type>article</type><title>Comparative analysis of nondimensionalization approaches for solving the 2‐D differentially heated cavity problem</title><source>Wiley Journals Collection</source><creator>Molina‐Herrera, F. I. ; Quemada‐Villagómez, L. I. ; Navarrete‐Bolaños, J. L. ; Jiménez‐Islas, H.</creator><creatorcontrib>Molina‐Herrera, F. I. ; Quemada‐Villagómez, L. I. ; Navarrete‐Bolaños, J. L. ; Jiménez‐Islas, H.</creatorcontrib><description>This work reports a numerical study on the effect of three nondimensionalization approaches that are commonly used to solve the classic problem of the 2‐D differentially heated cavity. The governing equations were discretized using orthogonal collocation with Legendre polynomials, and the resulting algebraic system was solved via Newton–Raphson method with LU factorization. The simulations were performed for Rayleigh numbers between 10
3
and 10
8
, considering the Prandtl number equal to 0.71 and a geometric aspect ratio equal to 1, analyzing the convergence and the computation time on the flow lines, isotherms and the Nusselt number. The mesh size that provides independent results was 51 × 51. Approach II was the most suitable for the nondimensionalization of the differentially heated cavity problem.</description><identifier>ISSN: 0271-2091</identifier><identifier>EISSN: 1097-0363</identifier><identifier>DOI: 10.1002/fld.5285</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Aspect ratio ; Comparative analysis ; Computation ; Fluid flow ; Newton-Raphson method ; Polynomials ; Prandtl number</subject><ispartof>International journal for numerical methods in fluids, 2024-07, Vol.96 (7), p.1276-1303</ispartof><rights>2024 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c216t-1fd63147be8b89b6b46b58a1f277139d32c9cb31e800fcee07bb5e22f3c55d5f3</cites><orcidid>0000-0002-1084-5520</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Molina‐Herrera, F. I.</creatorcontrib><creatorcontrib>Quemada‐Villagómez, L. I.</creatorcontrib><creatorcontrib>Navarrete‐Bolaños, J. L.</creatorcontrib><creatorcontrib>Jiménez‐Islas, H.</creatorcontrib><title>Comparative analysis of nondimensionalization approaches for solving the 2‐D differentially heated cavity problem</title><title>International journal for numerical methods in fluids</title><description>This work reports a numerical study on the effect of three nondimensionalization approaches that are commonly used to solve the classic problem of the 2‐D differentially heated cavity. The governing equations were discretized using orthogonal collocation with Legendre polynomials, and the resulting algebraic system was solved via Newton–Raphson method with LU factorization. The simulations were performed for Rayleigh numbers between 10
3
and 10
8
, considering the Prandtl number equal to 0.71 and a geometric aspect ratio equal to 1, analyzing the convergence and the computation time on the flow lines, isotherms and the Nusselt number. The mesh size that provides independent results was 51 × 51. Approach II was the most suitable for the nondimensionalization of the differentially heated cavity problem.</description><subject>Aspect ratio</subject><subject>Comparative analysis</subject><subject>Computation</subject><subject>Fluid flow</subject><subject>Newton-Raphson method</subject><subject>Polynomials</subject><subject>Prandtl number</subject><issn>0271-2091</issn><issn>1097-0363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkMtKAzEUhoMoWC_gIwTcuJl6kjRzWUq9QsGNrockc2JTZiZjMi2MKx_BZ_RJTKmrAz_fOT_nI-SKwZwB8FvbNnPJS3lEZgyqIgORi2MyA16wjEPFTslZjBsAqHgpZiQufTeooEa3Q6p61U7RReot7X3fuA776HxK3VcifE_VMASvzBojtT7Q6Nud6z_ouEbKf79_7mnjrMWA_ehU2050jWrEhhq1c-NE065usbsgJ1a1ES__5zl5f3x4Wz5nq9enl-XdKjOc5WPGbJMLtig0lrqsdK4XuZalYpYXBRNVI7ipjBYMSwBrEKHQWiLnVhgpG2nFObk-3E29n1uMY73x25C-ibWAfCFk8iESdXOgTPAxBrT1EFynwlQzqPdK66S03isVf92lbMI</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Molina‐Herrera, F. I.</creator><creator>Quemada‐Villagómez, L. I.</creator><creator>Navarrete‐Bolaños, J. L.</creator><creator>Jiménez‐Islas, H.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1084-5520</orcidid></search><sort><creationdate>20240701</creationdate><title>Comparative analysis of nondimensionalization approaches for solving the 2‐D differentially heated cavity problem</title><author>Molina‐Herrera, F. I. ; Quemada‐Villagómez, L. I. ; Navarrete‐Bolaños, J. L. ; Jiménez‐Islas, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c216t-1fd63147be8b89b6b46b58a1f277139d32c9cb31e800fcee07bb5e22f3c55d5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aspect ratio</topic><topic>Comparative analysis</topic><topic>Computation</topic><topic>Fluid flow</topic><topic>Newton-Raphson method</topic><topic>Polynomials</topic><topic>Prandtl number</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molina‐Herrera, F. I.</creatorcontrib><creatorcontrib>Quemada‐Villagómez, L. I.</creatorcontrib><creatorcontrib>Navarrete‐Bolaños, J. L.</creatorcontrib><creatorcontrib>Jiménez‐Islas, H.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Molina‐Herrera, F. I.</au><au>Quemada‐Villagómez, L. I.</au><au>Navarrete‐Bolaños, J. L.</au><au>Jiménez‐Islas, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative analysis of nondimensionalization approaches for solving the 2‐D differentially heated cavity problem</atitle><jtitle>International journal for numerical methods in fluids</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>96</volume><issue>7</issue><spage>1276</spage><epage>1303</epage><pages>1276-1303</pages><issn>0271-2091</issn><eissn>1097-0363</eissn><abstract>This work reports a numerical study on the effect of three nondimensionalization approaches that are commonly used to solve the classic problem of the 2‐D differentially heated cavity. The governing equations were discretized using orthogonal collocation with Legendre polynomials, and the resulting algebraic system was solved via Newton–Raphson method with LU factorization. The simulations were performed for Rayleigh numbers between 10
3
and 10
8
, considering the Prandtl number equal to 0.71 and a geometric aspect ratio equal to 1, analyzing the convergence and the computation time on the flow lines, isotherms and the Nusselt number. The mesh size that provides independent results was 51 × 51. Approach II was the most suitable for the nondimensionalization of the differentially heated cavity problem.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/fld.5285</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-1084-5520</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0271-2091 |
ispartof | International journal for numerical methods in fluids, 2024-07, Vol.96 (7), p.1276-1303 |
issn | 0271-2091 1097-0363 |
language | eng |
recordid | cdi_proquest_journals_3064352093 |
source | Wiley Journals Collection |
subjects | Aspect ratio Comparative analysis Computation Fluid flow Newton-Raphson method Polynomials Prandtl number |
title | Comparative analysis of nondimensionalization approaches for solving the 2‐D differentially heated cavity problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A04%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20analysis%20of%20nondimensionalization%20approaches%20for%20solving%20the%202%E2%80%90D%20differentially%20heated%20cavity%20problem&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20fluids&rft.au=Molina%E2%80%90Herrera,%20F.%20I.&rft.date=2024-07-01&rft.volume=96&rft.issue=7&rft.spage=1276&rft.epage=1303&rft.pages=1276-1303&rft.issn=0271-2091&rft.eissn=1097-0363&rft_id=info:doi/10.1002/fld.5285&rft_dat=%3Cproquest_cross%3E3064352093%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064352093&rft_id=info:pmid/&rfr_iscdi=true |