A tantalum oxide based memristive neuron device for anomaly detection application
Anomaly detection, a data intensive task, is very important in wide application scenarios. Memristor has shown excellent performance in data intensive tasks. However, memristor used for anomaly detection has rarely been reported. In this Letter, a tantalum oxide (TaOx) memristive neuron device has b...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2024-06, Vol.124 (23) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 23 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 124 |
creator | Wu, Zuheng Hu, Yang Feng, Zhe Zou, Jianxun Guo, Wenbin Lu, Jian Shi, Tuo Tan, Su Wang, Zeqing Yu, Ruihan Zhu, Yunlai Xu, Zuyu Dai, Yuehua |
description | Anomaly detection, a data intensive task, is very important in wide application scenarios. Memristor has shown excellent performance in data intensive tasks. However, memristor used for anomaly detection has rarely been reported. In this Letter, a tantalum oxide (TaOx) memristive neuron device has been developed for anomaly detection application. TaOx, a CMOS compatible material, based memristor shows reliable threshold switching characteristics, which is suitable for constructing memristive neuron. Furthermore, the output frequency of the memristive neuron is found to be proportionate to the applied stimulus intensity and at an inflection point starts to decrease, namely, thresholding effect. Based on the thresholding effect of the neuron output, the application of the memristive neuron for anomaly detection has been simulated. The results indicate that the TaOx memristive neuron with thresholding effect shows better performance (98.78%) than the neuron without threshoding effect (90.89%) for anomaly detection task. This work provided an effective idea for developing memristive anomaly detection system. |
doi_str_mv | 10.1063/5.0212850 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3064315919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064315919</sourcerecordid><originalsourceid>FETCH-LOGICAL-p148t-759c6b7a3a3fce506204ddb5b890f47a30ad829b5bc66efb9a1da562f48c2abb3</originalsourceid><addsrcrecordid>eNotkFtLAzEQhYMoWKsP_oOAb8LWXDbZzWMp3qAggj6HyWUhZW9ussX-e1Pbp5n55jBnOAjdU7KiRPInsSKMslqQC7SgpKoKTml9iRaEEF5IJeg1uolxl0fBOF-gzzVO0Cdo5w4Pv8F5bCB6hzvfTSGmsPe49_M09Nj5fbAeN8OEoR86aA8ZJW9TyEsYxzZYOPa36KqBNvq7c12i75fnr81bsf14fd-st8VIyzoVlVBWmgo48MZ6QSQjpXNGmFqRpsycgKuZysBK6RujgDoQkjVlbRkYw5fo4XR3nIaf2cekd8M89dlScyJLToWiKqseT6poQ_r_T49T6GA6aEr0MTIt9Dky_gdFuF62</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064315919</pqid></control><display><type>article</type><title>A tantalum oxide based memristive neuron device for anomaly detection application</title><source>AIP Journals Complete</source><creator>Wu, Zuheng ; Hu, Yang ; Feng, Zhe ; Zou, Jianxun ; Guo, Wenbin ; Lu, Jian ; Shi, Tuo ; Tan, Su ; Wang, Zeqing ; Yu, Ruihan ; Zhu, Yunlai ; Xu, Zuyu ; Dai, Yuehua</creator><creatorcontrib>Wu, Zuheng ; Hu, Yang ; Feng, Zhe ; Zou, Jianxun ; Guo, Wenbin ; Lu, Jian ; Shi, Tuo ; Tan, Su ; Wang, Zeqing ; Yu, Ruihan ; Zhu, Yunlai ; Xu, Zuyu ; Dai, Yuehua</creatorcontrib><description>Anomaly detection, a data intensive task, is very important in wide application scenarios. Memristor has shown excellent performance in data intensive tasks. However, memristor used for anomaly detection has rarely been reported. In this Letter, a tantalum oxide (TaOx) memristive neuron device has been developed for anomaly detection application. TaOx, a CMOS compatible material, based memristor shows reliable threshold switching characteristics, which is suitable for constructing memristive neuron. Furthermore, the output frequency of the memristive neuron is found to be proportionate to the applied stimulus intensity and at an inflection point starts to decrease, namely, thresholding effect. Based on the thresholding effect of the neuron output, the application of the memristive neuron for anomaly detection has been simulated. The results indicate that the TaOx memristive neuron with thresholding effect shows better performance (98.78%) than the neuron without threshoding effect (90.89%) for anomaly detection task. This work provided an effective idea for developing memristive anomaly detection system.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0212850</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Anomalies ; Memristors ; Tantalum ; Tantalum oxides</subject><ispartof>Applied physics letters, 2024-06, Vol.124 (23)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2546-5739 ; 0000-0002-5042-0703 ; 0000-0002-6465-5570 ; 0009-0002-8328-1399</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0212850$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,782,786,796,4516,27933,27934,76394</link.rule.ids></links><search><creatorcontrib>Wu, Zuheng</creatorcontrib><creatorcontrib>Hu, Yang</creatorcontrib><creatorcontrib>Feng, Zhe</creatorcontrib><creatorcontrib>Zou, Jianxun</creatorcontrib><creatorcontrib>Guo, Wenbin</creatorcontrib><creatorcontrib>Lu, Jian</creatorcontrib><creatorcontrib>Shi, Tuo</creatorcontrib><creatorcontrib>Tan, Su</creatorcontrib><creatorcontrib>Wang, Zeqing</creatorcontrib><creatorcontrib>Yu, Ruihan</creatorcontrib><creatorcontrib>Zhu, Yunlai</creatorcontrib><creatorcontrib>Xu, Zuyu</creatorcontrib><creatorcontrib>Dai, Yuehua</creatorcontrib><title>A tantalum oxide based memristive neuron device for anomaly detection application</title><title>Applied physics letters</title><description>Anomaly detection, a data intensive task, is very important in wide application scenarios. Memristor has shown excellent performance in data intensive tasks. However, memristor used for anomaly detection has rarely been reported. In this Letter, a tantalum oxide (TaOx) memristive neuron device has been developed for anomaly detection application. TaOx, a CMOS compatible material, based memristor shows reliable threshold switching characteristics, which is suitable for constructing memristive neuron. Furthermore, the output frequency of the memristive neuron is found to be proportionate to the applied stimulus intensity and at an inflection point starts to decrease, namely, thresholding effect. Based on the thresholding effect of the neuron output, the application of the memristive neuron for anomaly detection has been simulated. The results indicate that the TaOx memristive neuron with thresholding effect shows better performance (98.78%) than the neuron without threshoding effect (90.89%) for anomaly detection task. This work provided an effective idea for developing memristive anomaly detection system.</description><subject>Anomalies</subject><subject>Memristors</subject><subject>Tantalum</subject><subject>Tantalum oxides</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkFtLAzEQhYMoWKsP_oOAb8LWXDbZzWMp3qAggj6HyWUhZW9ussX-e1Pbp5n55jBnOAjdU7KiRPInsSKMslqQC7SgpKoKTml9iRaEEF5IJeg1uolxl0fBOF-gzzVO0Cdo5w4Pv8F5bCB6hzvfTSGmsPe49_M09Nj5fbAeN8OEoR86aA8ZJW9TyEsYxzZYOPa36KqBNvq7c12i75fnr81bsf14fd-st8VIyzoVlVBWmgo48MZ6QSQjpXNGmFqRpsycgKuZysBK6RujgDoQkjVlbRkYw5fo4XR3nIaf2cekd8M89dlScyJLToWiKqseT6poQ_r_T49T6GA6aEr0MTIt9Dky_gdFuF62</recordid><startdate>20240603</startdate><enddate>20240603</enddate><creator>Wu, Zuheng</creator><creator>Hu, Yang</creator><creator>Feng, Zhe</creator><creator>Zou, Jianxun</creator><creator>Guo, Wenbin</creator><creator>Lu, Jian</creator><creator>Shi, Tuo</creator><creator>Tan, Su</creator><creator>Wang, Zeqing</creator><creator>Yu, Ruihan</creator><creator>Zhu, Yunlai</creator><creator>Xu, Zuyu</creator><creator>Dai, Yuehua</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2546-5739</orcidid><orcidid>https://orcid.org/0000-0002-5042-0703</orcidid><orcidid>https://orcid.org/0000-0002-6465-5570</orcidid><orcidid>https://orcid.org/0009-0002-8328-1399</orcidid></search><sort><creationdate>20240603</creationdate><title>A tantalum oxide based memristive neuron device for anomaly detection application</title><author>Wu, Zuheng ; Hu, Yang ; Feng, Zhe ; Zou, Jianxun ; Guo, Wenbin ; Lu, Jian ; Shi, Tuo ; Tan, Su ; Wang, Zeqing ; Yu, Ruihan ; Zhu, Yunlai ; Xu, Zuyu ; Dai, Yuehua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p148t-759c6b7a3a3fce506204ddb5b890f47a30ad829b5bc66efb9a1da562f48c2abb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anomalies</topic><topic>Memristors</topic><topic>Tantalum</topic><topic>Tantalum oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Zuheng</creatorcontrib><creatorcontrib>Hu, Yang</creatorcontrib><creatorcontrib>Feng, Zhe</creatorcontrib><creatorcontrib>Zou, Jianxun</creatorcontrib><creatorcontrib>Guo, Wenbin</creatorcontrib><creatorcontrib>Lu, Jian</creatorcontrib><creatorcontrib>Shi, Tuo</creatorcontrib><creatorcontrib>Tan, Su</creatorcontrib><creatorcontrib>Wang, Zeqing</creatorcontrib><creatorcontrib>Yu, Ruihan</creatorcontrib><creatorcontrib>Zhu, Yunlai</creatorcontrib><creatorcontrib>Xu, Zuyu</creatorcontrib><creatorcontrib>Dai, Yuehua</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Zuheng</au><au>Hu, Yang</au><au>Feng, Zhe</au><au>Zou, Jianxun</au><au>Guo, Wenbin</au><au>Lu, Jian</au><au>Shi, Tuo</au><au>Tan, Su</au><au>Wang, Zeqing</au><au>Yu, Ruihan</au><au>Zhu, Yunlai</au><au>Xu, Zuyu</au><au>Dai, Yuehua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A tantalum oxide based memristive neuron device for anomaly detection application</atitle><jtitle>Applied physics letters</jtitle><date>2024-06-03</date><risdate>2024</risdate><volume>124</volume><issue>23</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Anomaly detection, a data intensive task, is very important in wide application scenarios. Memristor has shown excellent performance in data intensive tasks. However, memristor used for anomaly detection has rarely been reported. In this Letter, a tantalum oxide (TaOx) memristive neuron device has been developed for anomaly detection application. TaOx, a CMOS compatible material, based memristor shows reliable threshold switching characteristics, which is suitable for constructing memristive neuron. Furthermore, the output frequency of the memristive neuron is found to be proportionate to the applied stimulus intensity and at an inflection point starts to decrease, namely, thresholding effect. Based on the thresholding effect of the neuron output, the application of the memristive neuron for anomaly detection has been simulated. The results indicate that the TaOx memristive neuron with thresholding effect shows better performance (98.78%) than the neuron without threshoding effect (90.89%) for anomaly detection task. This work provided an effective idea for developing memristive anomaly detection system.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0212850</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-2546-5739</orcidid><orcidid>https://orcid.org/0000-0002-5042-0703</orcidid><orcidid>https://orcid.org/0000-0002-6465-5570</orcidid><orcidid>https://orcid.org/0009-0002-8328-1399</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2024-06, Vol.124 (23) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_proquest_journals_3064315919 |
source | AIP Journals Complete |
subjects | Anomalies Memristors Tantalum Tantalum oxides |
title | A tantalum oxide based memristive neuron device for anomaly detection application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T12%3A47%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20tantalum%20oxide%20based%20memristive%20neuron%20device%20for%20anomaly%20detection%20application&rft.jtitle=Applied%20physics%20letters&rft.au=Wu,%20Zuheng&rft.date=2024-06-03&rft.volume=124&rft.issue=23&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0212850&rft_dat=%3Cproquest_scita%3E3064315919%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064315919&rft_id=info:pmid/&rfr_iscdi=true |