Phase-field formulated meshless simulation of Rayleigh-Taylor instability problem

The interface between two immiscible Newtonian liquids with different densities and the same viscosity, influenced by gravity, is based on the Phase-Field Method (PFM) formulation. The solution of the related governing coupled Navier-Stokes (NS) and Cahn-Hillard (CH) equations is structured by the m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2024-05, Vol.2766 (1), p.12163
Hauptverfasser: Rana, K B, Mavrič, B, Šarler, B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12163
container_title Journal of physics. Conference series
container_volume 2766
creator Rana, K B
Mavrič, B
Šarler, B
description The interface between two immiscible Newtonian liquids with different densities and the same viscosity, influenced by gravity, is based on the Phase-Field Method (PFM) formulation. The solution of the related governing coupled Navier-Stokes (NS) and Cahn-Hillard (CH) equations is structured by the meshless Diffuse Approximate Method (DAM) and Pressure Implicit with Splitting of Operators (PISO). The variable density is involved in the inertial and buoyancy terms (non-Boussinesq formulation). The related moving boundary problem is handled through single-domain, irregular, fixed node arrangement in two-dimensional Cartesian coordinates. The meshless DAM uses weighted least squares approximation on overlapping subdomains, polynomial shape functions of second-order and Gaussian weights. Implicit time discretisation is performed for the NS and CH equations in the momentum predictor and Phase-Field (PF) variable corrector steps of PISO, while the momentum corrector steps solve the NS equation explicitly. This solution procedure has improved stability compared to Chorin’s pressure-velocity coupling, previously used in meshless solutions of related problems. The Rayleigh-Taylor instability problem simulations are performed for an Atwood number of 0.76. The DAM parameters (shape parameter of the Gaussian weight function and number of nodes in a local subdomain) are the same as in the author’s previous studies on single-phase flows. The simulations did not need any upwinding in the range of the simulations. The results compare well with the mesh-based finite volume method studies performed with the open-source code Gerris.
doi_str_mv 10.1088/1742-6596/2766/1/012163
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_3064230339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064230339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2743-b33cce1bb3362a78e54f2edac29acb02a839bb06513a372024c241b68c8c46483</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKe_wYJ3Qm2-lqaXMvxk4NR5HZI0dRntUpP2Yv_e1MpEEMzNOSTPOS95ADhH8ApBzjOUU5yyWcEynDOWoQwijBg5AJP9y-G-5_wYnISwgZDEk0_A83Itg0kra-oyqZxv-lp2pkwaE9a1CSEJ9uvKum3iquRF7mpj39fpKjbOJ3YbOqlsbbtd0nqnatOcgqNK1sGcfdcpeLu9Wc3v08XT3cP8epFqnFOSKkK0NkjFyrDMuZnRCptSalxIrSCWnBRKQTZDRJIcQ0w1pkgxrrmmjHIyBRfj3pj70ZvQiY3r_TZGCgIZxSR-sYhUPlLauxC8qUTrbSP9TiAoBn9iMCMGS2LwJ5AY_cXJy3HSuvZn9eNy_vobFG1ZRZj8Af8X8Qlbc4AW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064230339</pqid></control><display><type>article</type><title>Phase-field formulated meshless simulation of Rayleigh-Taylor instability problem</title><source>Institute of Physics IOPscience extra</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Institute of Physics Open Access Journal Titles</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Rana, K B ; Mavrič, B ; Šarler, B</creator><creatorcontrib>Rana, K B ; Mavrič, B ; Šarler, B</creatorcontrib><description>The interface between two immiscible Newtonian liquids with different densities and the same viscosity, influenced by gravity, is based on the Phase-Field Method (PFM) formulation. The solution of the related governing coupled Navier-Stokes (NS) and Cahn-Hillard (CH) equations is structured by the meshless Diffuse Approximate Method (DAM) and Pressure Implicit with Splitting of Operators (PISO). The variable density is involved in the inertial and buoyancy terms (non-Boussinesq formulation). The related moving boundary problem is handled through single-domain, irregular, fixed node arrangement in two-dimensional Cartesian coordinates. The meshless DAM uses weighted least squares approximation on overlapping subdomains, polynomial shape functions of second-order and Gaussian weights. Implicit time discretisation is performed for the NS and CH equations in the momentum predictor and Phase-Field (PF) variable corrector steps of PISO, while the momentum corrector steps solve the NS equation explicitly. This solution procedure has improved stability compared to Chorin’s pressure-velocity coupling, previously used in meshless solutions of related problems. The Rayleigh-Taylor instability problem simulations are performed for an Atwood number of 0.76. The DAM parameters (shape parameter of the Gaussian weight function and number of nodes in a local subdomain) are the same as in the author’s previous studies on single-phase flows. The simulations did not need any upwinding in the range of the simulations. The results compare well with the mesh-based finite volume method studies performed with the open-source code Gerris.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2766/1/012163</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Boussinesq equations ; Cartesian coordinates ; Finite volume method ; Interface stability ; Meshless methods ; Momentum ; Newtonian liquids ; Operators (mathematics) ; Parameters ; Polynomials ; Shape functions ; Simulation ; Single-phase flow ; Source code ; Taylor instability ; Velocity coupling ; Weighting functions</subject><ispartof>Journal of physics. Conference series, 2024-05, Vol.2766 (1), p.12163</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2743-b33cce1bb3362a78e54f2edac29acb02a839bb06513a372024c241b68c8c46483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/2766/1/012163/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Rana, K B</creatorcontrib><creatorcontrib>Mavrič, B</creatorcontrib><creatorcontrib>Šarler, B</creatorcontrib><title>Phase-field formulated meshless simulation of Rayleigh-Taylor instability problem</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>The interface between two immiscible Newtonian liquids with different densities and the same viscosity, influenced by gravity, is based on the Phase-Field Method (PFM) formulation. The solution of the related governing coupled Navier-Stokes (NS) and Cahn-Hillard (CH) equations is structured by the meshless Diffuse Approximate Method (DAM) and Pressure Implicit with Splitting of Operators (PISO). The variable density is involved in the inertial and buoyancy terms (non-Boussinesq formulation). The related moving boundary problem is handled through single-domain, irregular, fixed node arrangement in two-dimensional Cartesian coordinates. The meshless DAM uses weighted least squares approximation on overlapping subdomains, polynomial shape functions of second-order and Gaussian weights. Implicit time discretisation is performed for the NS and CH equations in the momentum predictor and Phase-Field (PF) variable corrector steps of PISO, while the momentum corrector steps solve the NS equation explicitly. This solution procedure has improved stability compared to Chorin’s pressure-velocity coupling, previously used in meshless solutions of related problems. The Rayleigh-Taylor instability problem simulations are performed for an Atwood number of 0.76. The DAM parameters (shape parameter of the Gaussian weight function and number of nodes in a local subdomain) are the same as in the author’s previous studies on single-phase flows. The simulations did not need any upwinding in the range of the simulations. The results compare well with the mesh-based finite volume method studies performed with the open-source code Gerris.</description><subject>Boussinesq equations</subject><subject>Cartesian coordinates</subject><subject>Finite volume method</subject><subject>Interface stability</subject><subject>Meshless methods</subject><subject>Momentum</subject><subject>Newtonian liquids</subject><subject>Operators (mathematics)</subject><subject>Parameters</subject><subject>Polynomials</subject><subject>Shape functions</subject><subject>Simulation</subject><subject>Single-phase flow</subject><subject>Source code</subject><subject>Taylor instability</subject><subject>Velocity coupling</subject><subject>Weighting functions</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkF1LwzAUhoMoOKe_wYJ3Qm2-lqaXMvxk4NR5HZI0dRntUpP2Yv_e1MpEEMzNOSTPOS95ADhH8ApBzjOUU5yyWcEynDOWoQwijBg5AJP9y-G-5_wYnISwgZDEk0_A83Itg0kra-oyqZxv-lp2pkwaE9a1CSEJ9uvKum3iquRF7mpj39fpKjbOJ3YbOqlsbbtd0nqnatOcgqNK1sGcfdcpeLu9Wc3v08XT3cP8epFqnFOSKkK0NkjFyrDMuZnRCptSalxIrSCWnBRKQTZDRJIcQ0w1pkgxrrmmjHIyBRfj3pj70ZvQiY3r_TZGCgIZxSR-sYhUPlLauxC8qUTrbSP9TiAoBn9iMCMGS2LwJ5AY_cXJy3HSuvZn9eNy_vobFG1ZRZj8Af8X8Qlbc4AW</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Rana, K B</creator><creator>Mavrič, B</creator><creator>Šarler, B</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20240501</creationdate><title>Phase-field formulated meshless simulation of Rayleigh-Taylor instability problem</title><author>Rana, K B ; Mavrič, B ; Šarler, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2743-b33cce1bb3362a78e54f2edac29acb02a839bb06513a372024c241b68c8c46483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boussinesq equations</topic><topic>Cartesian coordinates</topic><topic>Finite volume method</topic><topic>Interface stability</topic><topic>Meshless methods</topic><topic>Momentum</topic><topic>Newtonian liquids</topic><topic>Operators (mathematics)</topic><topic>Parameters</topic><topic>Polynomials</topic><topic>Shape functions</topic><topic>Simulation</topic><topic>Single-phase flow</topic><topic>Source code</topic><topic>Taylor instability</topic><topic>Velocity coupling</topic><topic>Weighting functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rana, K B</creatorcontrib><creatorcontrib>Mavrič, B</creatorcontrib><creatorcontrib>Šarler, B</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rana, K B</au><au>Mavrič, B</au><au>Šarler, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase-field formulated meshless simulation of Rayleigh-Taylor instability problem</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>2766</volume><issue>1</issue><spage>12163</spage><pages>12163-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The interface between two immiscible Newtonian liquids with different densities and the same viscosity, influenced by gravity, is based on the Phase-Field Method (PFM) formulation. The solution of the related governing coupled Navier-Stokes (NS) and Cahn-Hillard (CH) equations is structured by the meshless Diffuse Approximate Method (DAM) and Pressure Implicit with Splitting of Operators (PISO). The variable density is involved in the inertial and buoyancy terms (non-Boussinesq formulation). The related moving boundary problem is handled through single-domain, irregular, fixed node arrangement in two-dimensional Cartesian coordinates. The meshless DAM uses weighted least squares approximation on overlapping subdomains, polynomial shape functions of second-order and Gaussian weights. Implicit time discretisation is performed for the NS and CH equations in the momentum predictor and Phase-Field (PF) variable corrector steps of PISO, while the momentum corrector steps solve the NS equation explicitly. This solution procedure has improved stability compared to Chorin’s pressure-velocity coupling, previously used in meshless solutions of related problems. The Rayleigh-Taylor instability problem simulations are performed for an Atwood number of 0.76. The DAM parameters (shape parameter of the Gaussian weight function and number of nodes in a local subdomain) are the same as in the author’s previous studies on single-phase flows. The simulations did not need any upwinding in the range of the simulations. The results compare well with the mesh-based finite volume method studies performed with the open-source code Gerris.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2766/1/012163</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2024-05, Vol.2766 (1), p.12163
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_3064230339
source Institute of Physics IOPscience extra; Full-Text Journals in Chemistry (Open access); Institute of Physics Open Access Journal Titles; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Boussinesq equations
Cartesian coordinates
Finite volume method
Interface stability
Meshless methods
Momentum
Newtonian liquids
Operators (mathematics)
Parameters
Polynomials
Shape functions
Simulation
Single-phase flow
Source code
Taylor instability
Velocity coupling
Weighting functions
title Phase-field formulated meshless simulation of Rayleigh-Taylor instability problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A56%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase-field%20formulated%20meshless%20simulation%20of%20Rayleigh-Taylor%20instability%20problem&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Rana,%20K%20B&rft.date=2024-05-01&rft.volume=2766&rft.issue=1&rft.spage=12163&rft.pages=12163-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2766/1/012163&rft_dat=%3Cproquest_iop_j%3E3064230339%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064230339&rft_id=info:pmid/&rfr_iscdi=true