Coarse equivalence versus bijective coarse equivalence of expander graphs

We provide a characterization of when a coarse equivalence between coarse disjoint unions of expander graphs is close to a bijective coarse equivalence. We use this to show that if the uniform Roe algebras of coarse disjoint unions of expanders graphs are isomorphic, then the metric spaces must be b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2024-07, Vol.307 (3), Article 44
Hauptverfasser: Baudier, Florent P., Braga, Bruno M., Farah, Ilijas, Vignati, Alessandro, Willett, Rufus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Mathematische Zeitschrift
container_volume 307
creator Baudier, Florent P.
Braga, Bruno M.
Farah, Ilijas
Vignati, Alessandro
Willett, Rufus
description We provide a characterization of when a coarse equivalence between coarse disjoint unions of expander graphs is close to a bijective coarse equivalence. We use this to show that if the uniform Roe algebras of coarse disjoint unions of expanders graphs are isomorphic, then the metric spaces must be bijectively coarsely equivalent.
doi_str_mv 10.1007/s00209-024-03512-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3064182384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064182384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-86be5aa27ef1691a8a720ddc151927cf7c7a473a2dffdca85e37b5169be521293</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqHwB5giMRvOX3UyogpopUosMFuucy6JSpLaTQv_HpcgMSAx3XDP857uJeSawS0D0HcRgENJgUsKQjFODyckY1JwygouTkmW9oqqQstzchFjA5CWWmZkMetsiJjjdqj3doOtw3yPIQ4xX9UNul29x9z9ZTqf40dv2wpDvg62f4uX5MzbTcSrnzkhr48PL7M5XT4_LWb3S-o4wI4W0xUqa7lGz6Yls4XVHKrKMcVKrp3XTlupheWV95WzhUKhVyqhSeOMl2JCbsbcPnTbAePONN0Q2nTSCJjK47-FTBQfKRe6GAN604f63YZPw8AcKzNjZSZVZr4rM4ckiVGKCW7XGH6j_7G-AK7fb-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064182384</pqid></control><display><type>article</type><title>Coarse equivalence versus bijective coarse equivalence of expander graphs</title><source>SpringerLink Journals - AutoHoldings</source><creator>Baudier, Florent P. ; Braga, Bruno M. ; Farah, Ilijas ; Vignati, Alessandro ; Willett, Rufus</creator><creatorcontrib>Baudier, Florent P. ; Braga, Bruno M. ; Farah, Ilijas ; Vignati, Alessandro ; Willett, Rufus</creatorcontrib><description>We provide a characterization of when a coarse equivalence between coarse disjoint unions of expander graphs is close to a bijective coarse equivalence. We use this to show that if the uniform Roe algebras of coarse disjoint unions of expanders graphs are isomorphic, then the metric spaces must be bijectively coarsely equivalent.</description><identifier>ISSN: 0025-5874</identifier><identifier>EISSN: 1432-1823</identifier><identifier>DOI: 10.1007/s00209-024-03512-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Equivalence ; Expanders ; Graphs ; Mathematics ; Mathematics and Statistics ; Metric space ; Unions</subject><ispartof>Mathematische Zeitschrift, 2024-07, Vol.307 (3), Article 44</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-86be5aa27ef1691a8a720ddc151927cf7c7a473a2dffdca85e37b5169be521293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00209-024-03512-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00209-024-03512-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Baudier, Florent P.</creatorcontrib><creatorcontrib>Braga, Bruno M.</creatorcontrib><creatorcontrib>Farah, Ilijas</creatorcontrib><creatorcontrib>Vignati, Alessandro</creatorcontrib><creatorcontrib>Willett, Rufus</creatorcontrib><title>Coarse equivalence versus bijective coarse equivalence of expander graphs</title><title>Mathematische Zeitschrift</title><addtitle>Math. Z</addtitle><description>We provide a characterization of when a coarse equivalence between coarse disjoint unions of expander graphs is close to a bijective coarse equivalence. We use this to show that if the uniform Roe algebras of coarse disjoint unions of expanders graphs are isomorphic, then the metric spaces must be bijectively coarsely equivalent.</description><subject>Equivalence</subject><subject>Expanders</subject><subject>Graphs</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Metric space</subject><subject>Unions</subject><issn>0025-5874</issn><issn>1432-1823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqHwB5giMRvOX3UyogpopUosMFuucy6JSpLaTQv_HpcgMSAx3XDP857uJeSawS0D0HcRgENJgUsKQjFODyckY1JwygouTkmW9oqqQstzchFjA5CWWmZkMetsiJjjdqj3doOtw3yPIQ4xX9UNul29x9z9ZTqf40dv2wpDvg62f4uX5MzbTcSrnzkhr48PL7M5XT4_LWb3S-o4wI4W0xUqa7lGz6Yls4XVHKrKMcVKrp3XTlupheWV95WzhUKhVyqhSeOMl2JCbsbcPnTbAePONN0Q2nTSCJjK47-FTBQfKRe6GAN604f63YZPw8AcKzNjZSZVZr4rM4ckiVGKCW7XGH6j_7G-AK7fb-Q</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Baudier, Florent P.</creator><creator>Braga, Bruno M.</creator><creator>Farah, Ilijas</creator><creator>Vignati, Alessandro</creator><creator>Willett, Rufus</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240701</creationdate><title>Coarse equivalence versus bijective coarse equivalence of expander graphs</title><author>Baudier, Florent P. ; Braga, Bruno M. ; Farah, Ilijas ; Vignati, Alessandro ; Willett, Rufus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-86be5aa27ef1691a8a720ddc151927cf7c7a473a2dffdca85e37b5169be521293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Equivalence</topic><topic>Expanders</topic><topic>Graphs</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Metric space</topic><topic>Unions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baudier, Florent P.</creatorcontrib><creatorcontrib>Braga, Bruno M.</creatorcontrib><creatorcontrib>Farah, Ilijas</creatorcontrib><creatorcontrib>Vignati, Alessandro</creatorcontrib><creatorcontrib>Willett, Rufus</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Zeitschrift</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baudier, Florent P.</au><au>Braga, Bruno M.</au><au>Farah, Ilijas</au><au>Vignati, Alessandro</au><au>Willett, Rufus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coarse equivalence versus bijective coarse equivalence of expander graphs</atitle><jtitle>Mathematische Zeitschrift</jtitle><stitle>Math. Z</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>307</volume><issue>3</issue><artnum>44</artnum><issn>0025-5874</issn><eissn>1432-1823</eissn><abstract>We provide a characterization of when a coarse equivalence between coarse disjoint unions of expander graphs is close to a bijective coarse equivalence. We use this to show that if the uniform Roe algebras of coarse disjoint unions of expanders graphs are isomorphic, then the metric spaces must be bijectively coarsely equivalent.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00209-024-03512-w</doi></addata></record>
fulltext fulltext
identifier ISSN: 0025-5874
ispartof Mathematische Zeitschrift, 2024-07, Vol.307 (3), Article 44
issn 0025-5874
1432-1823
language eng
recordid cdi_proquest_journals_3064182384
source SpringerLink Journals - AutoHoldings
subjects Equivalence
Expanders
Graphs
Mathematics
Mathematics and Statistics
Metric space
Unions
title Coarse equivalence versus bijective coarse equivalence of expander graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A40%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coarse%20equivalence%20versus%20bijective%20coarse%20equivalence%20of%20expander%20graphs&rft.jtitle=Mathematische%20Zeitschrift&rft.au=Baudier,%20Florent%20P.&rft.date=2024-07-01&rft.volume=307&rft.issue=3&rft.artnum=44&rft.issn=0025-5874&rft.eissn=1432-1823&rft_id=info:doi/10.1007/s00209-024-03512-w&rft_dat=%3Cproquest_cross%3E3064182384%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064182384&rft_id=info:pmid/&rfr_iscdi=true