Coarse equivalence versus bijective coarse equivalence of expander graphs
We provide a characterization of when a coarse equivalence between coarse disjoint unions of expander graphs is close to a bijective coarse equivalence. We use this to show that if the uniform Roe algebras of coarse disjoint unions of expanders graphs are isomorphic, then the metric spaces must be b...
Gespeichert in:
Veröffentlicht in: | Mathematische Zeitschrift 2024-07, Vol.307 (3), Article 44 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Mathematische Zeitschrift |
container_volume | 307 |
creator | Baudier, Florent P. Braga, Bruno M. Farah, Ilijas Vignati, Alessandro Willett, Rufus |
description | We provide a characterization of when a coarse equivalence between coarse disjoint unions of expander graphs is close to a bijective coarse equivalence. We use this to show that if the uniform Roe algebras of coarse disjoint unions of expanders graphs are isomorphic, then the metric spaces must be bijectively coarsely equivalent. |
doi_str_mv | 10.1007/s00209-024-03512-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3064182384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064182384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-86be5aa27ef1691a8a720ddc151927cf7c7a473a2dffdca85e37b5169be521293</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqHwB5giMRvOX3UyogpopUosMFuucy6JSpLaTQv_HpcgMSAx3XDP857uJeSawS0D0HcRgENJgUsKQjFODyckY1JwygouTkmW9oqqQstzchFjA5CWWmZkMetsiJjjdqj3doOtw3yPIQ4xX9UNul29x9z9ZTqf40dv2wpDvg62f4uX5MzbTcSrnzkhr48PL7M5XT4_LWb3S-o4wI4W0xUqa7lGz6Yls4XVHKrKMcVKrp3XTlupheWV95WzhUKhVyqhSeOMl2JCbsbcPnTbAePONN0Q2nTSCJjK47-FTBQfKRe6GAN604f63YZPw8AcKzNjZSZVZr4rM4ckiVGKCW7XGH6j_7G-AK7fb-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064182384</pqid></control><display><type>article</type><title>Coarse equivalence versus bijective coarse equivalence of expander graphs</title><source>SpringerLink Journals - AutoHoldings</source><creator>Baudier, Florent P. ; Braga, Bruno M. ; Farah, Ilijas ; Vignati, Alessandro ; Willett, Rufus</creator><creatorcontrib>Baudier, Florent P. ; Braga, Bruno M. ; Farah, Ilijas ; Vignati, Alessandro ; Willett, Rufus</creatorcontrib><description>We provide a characterization of when a coarse equivalence between coarse disjoint unions of expander graphs is close to a bijective coarse equivalence. We use this to show that if the uniform Roe algebras of coarse disjoint unions of expanders graphs are isomorphic, then the metric spaces must be bijectively coarsely equivalent.</description><identifier>ISSN: 0025-5874</identifier><identifier>EISSN: 1432-1823</identifier><identifier>DOI: 10.1007/s00209-024-03512-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Equivalence ; Expanders ; Graphs ; Mathematics ; Mathematics and Statistics ; Metric space ; Unions</subject><ispartof>Mathematische Zeitschrift, 2024-07, Vol.307 (3), Article 44</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-86be5aa27ef1691a8a720ddc151927cf7c7a473a2dffdca85e37b5169be521293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00209-024-03512-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00209-024-03512-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Baudier, Florent P.</creatorcontrib><creatorcontrib>Braga, Bruno M.</creatorcontrib><creatorcontrib>Farah, Ilijas</creatorcontrib><creatorcontrib>Vignati, Alessandro</creatorcontrib><creatorcontrib>Willett, Rufus</creatorcontrib><title>Coarse equivalence versus bijective coarse equivalence of expander graphs</title><title>Mathematische Zeitschrift</title><addtitle>Math. Z</addtitle><description>We provide a characterization of when a coarse equivalence between coarse disjoint unions of expander graphs is close to a bijective coarse equivalence. We use this to show that if the uniform Roe algebras of coarse disjoint unions of expanders graphs are isomorphic, then the metric spaces must be bijectively coarsely equivalent.</description><subject>Equivalence</subject><subject>Expanders</subject><subject>Graphs</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Metric space</subject><subject>Unions</subject><issn>0025-5874</issn><issn>1432-1823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqHwB5giMRvOX3UyogpopUosMFuucy6JSpLaTQv_HpcgMSAx3XDP857uJeSawS0D0HcRgENJgUsKQjFODyckY1JwygouTkmW9oqqQstzchFjA5CWWmZkMetsiJjjdqj3doOtw3yPIQ4xX9UNul29x9z9ZTqf40dv2wpDvg62f4uX5MzbTcSrnzkhr48PL7M5XT4_LWb3S-o4wI4W0xUqa7lGz6Yls4XVHKrKMcVKrp3XTlupheWV95WzhUKhVyqhSeOMl2JCbsbcPnTbAePONN0Q2nTSCJjK47-FTBQfKRe6GAN604f63YZPw8AcKzNjZSZVZr4rM4ckiVGKCW7XGH6j_7G-AK7fb-Q</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Baudier, Florent P.</creator><creator>Braga, Bruno M.</creator><creator>Farah, Ilijas</creator><creator>Vignati, Alessandro</creator><creator>Willett, Rufus</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240701</creationdate><title>Coarse equivalence versus bijective coarse equivalence of expander graphs</title><author>Baudier, Florent P. ; Braga, Bruno M. ; Farah, Ilijas ; Vignati, Alessandro ; Willett, Rufus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-86be5aa27ef1691a8a720ddc151927cf7c7a473a2dffdca85e37b5169be521293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Equivalence</topic><topic>Expanders</topic><topic>Graphs</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Metric space</topic><topic>Unions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baudier, Florent P.</creatorcontrib><creatorcontrib>Braga, Bruno M.</creatorcontrib><creatorcontrib>Farah, Ilijas</creatorcontrib><creatorcontrib>Vignati, Alessandro</creatorcontrib><creatorcontrib>Willett, Rufus</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Zeitschrift</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baudier, Florent P.</au><au>Braga, Bruno M.</au><au>Farah, Ilijas</au><au>Vignati, Alessandro</au><au>Willett, Rufus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coarse equivalence versus bijective coarse equivalence of expander graphs</atitle><jtitle>Mathematische Zeitschrift</jtitle><stitle>Math. Z</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>307</volume><issue>3</issue><artnum>44</artnum><issn>0025-5874</issn><eissn>1432-1823</eissn><abstract>We provide a characterization of when a coarse equivalence between coarse disjoint unions of expander graphs is close to a bijective coarse equivalence. We use this to show that if the uniform Roe algebras of coarse disjoint unions of expanders graphs are isomorphic, then the metric spaces must be bijectively coarsely equivalent.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00209-024-03512-w</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5874 |
ispartof | Mathematische Zeitschrift, 2024-07, Vol.307 (3), Article 44 |
issn | 0025-5874 1432-1823 |
language | eng |
recordid | cdi_proquest_journals_3064182384 |
source | SpringerLink Journals - AutoHoldings |
subjects | Equivalence Expanders Graphs Mathematics Mathematics and Statistics Metric space Unions |
title | Coarse equivalence versus bijective coarse equivalence of expander graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A40%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coarse%20equivalence%20versus%20bijective%20coarse%20equivalence%20of%20expander%20graphs&rft.jtitle=Mathematische%20Zeitschrift&rft.au=Baudier,%20Florent%20P.&rft.date=2024-07-01&rft.volume=307&rft.issue=3&rft.artnum=44&rft.issn=0025-5874&rft.eissn=1432-1823&rft_id=info:doi/10.1007/s00209-024-03512-w&rft_dat=%3Cproquest_cross%3E3064182384%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064182384&rft_id=info:pmid/&rfr_iscdi=true |