Dynamic neuro fuzzy diagnosis of fetal hypoplastic cardiac syndrome using ultrasound images

Congenital heart anomalies (CHA) represent a substantial risk to neonates, with 28% to 48% of cases resulting in life-threatening conditions. Consequently, careful prenatal screening is crucial for effective management. Within the spectrum of 18 CHA types, identifying the irregularities in heart mor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2023-12, Vol.83 (20), p.59317-59333
Hauptverfasser: Kavitha, D., Geetha, S., Geetha, R., Kadry, Seifedine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 59333
container_issue 20
container_start_page 59317
container_title Multimedia tools and applications
container_volume 83
creator Kavitha, D.
Geetha, S.
Geetha, R.
Kadry, Seifedine
description Congenital heart anomalies (CHA) represent a substantial risk to neonates, with 28% to 48% of cases resulting in life-threatening conditions. Consequently, careful prenatal screening is crucial for effective management. Within the spectrum of 18 CHA types, identifying the irregularities in heart morphology, notably the underdeveloped left heart chamber, poses a significant challenge. Hypoplastic Left Heart Syndrome (HLHS), an infrequent yet critical CHA demands diagnosis between the 17th and 21st week of growth. Despite the efficacy of ultrasound imaging, the diagnosis remains intricate due to speckle noise and the complex nature of heart chamber appearances. Selecting an accurate pre-processing algorithm is crucial, and the Fuzzy-based Maximum Likelihood Estimation Technique (FMLET) stands as a pivotal choice. Among the vital parameters for manual diagnosis from ultrasound images, the Right Ventricular Left Ventricular Ratio (RVLVR) and the Cardiac Thoracic Ratio (CTR) play a prominent role. Employing morphological operations such as opening, closing, thinning, and thickening facilitates the extraction of diagnostically crucial features embedded within the images. The development of a Computer-Aided Decision Support (CADS) system, integrating an Adaptive Neuro Fuzzy Classifier (ANFC) proves to be instrumental. ANFC stands out as a better classifier and demonstrates self-learning capabilities similar to that of experts, resulting in a higher diagnostic accuracy rate. The presented Computer-Aided Diagnostic System (CADS) exhibited a notable diagnostic accuracy of 91%, supported by a standardized Area Under the Receiver Operating Characteristic (ROC) curve of 0.92. These results emphasize the system's robustness and effectiveness in diagnosing prenatal CHA, particularly HLHS. Graphical abstract Architecture of the proposed CAD system
doi_str_mv 10.1007/s11042-023-17847-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3063930598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3063930598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-52c9aff1b6b8663a1e6525da1f894419bcdd5f753b5cf2574e23725115edd4d33</originalsourceid><addsrcrecordid>eNp9kLtOxDAQRS0EEsvCD1BZojb4EcdJiZanhEQDFYXl-BGyytrBTors12MIElRUM8W5d0YHgHOCLwnG4ioRgguKMGWIiKoQqD4AK8IFQ0JQcvhnPwYnKW0xJiWnxQq83cxe7ToNvZ1igG7a72doOtX6kLoEg4POjqqH7_MQhl6lMaNaxUxomGZvYthZOKXOt3Dqx6hSmLyB3U61Np2CI6f6ZM9-5hq83t2-bB7Q0_P94-b6CWkq8Ig41bVyjjRlU5UlU8Tm17hRxFV1UZC60cZwJzhruHaUi8JSJignhFtjCsPYGlwsvUMMH5NNo9yGKfp8UjJcspphXleZogulY0gpWieHmP-MsyRYfkmUi0SZJcpvibLOIbaEUoZ9a-Nv9T-pTygidho</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3063930598</pqid></control><display><type>article</type><title>Dynamic neuro fuzzy diagnosis of fetal hypoplastic cardiac syndrome using ultrasound images</title><source>SpringerLink Journals</source><creator>Kavitha, D. ; Geetha, S. ; Geetha, R. ; Kadry, Seifedine</creator><creatorcontrib>Kavitha, D. ; Geetha, S. ; Geetha, R. ; Kadry, Seifedine</creatorcontrib><description>Congenital heart anomalies (CHA) represent a substantial risk to neonates, with 28% to 48% of cases resulting in life-threatening conditions. Consequently, careful prenatal screening is crucial for effective management. Within the spectrum of 18 CHA types, identifying the irregularities in heart morphology, notably the underdeveloped left heart chamber, poses a significant challenge. Hypoplastic Left Heart Syndrome (HLHS), an infrequent yet critical CHA demands diagnosis between the 17th and 21st week of growth. Despite the efficacy of ultrasound imaging, the diagnosis remains intricate due to speckle noise and the complex nature of heart chamber appearances. Selecting an accurate pre-processing algorithm is crucial, and the Fuzzy-based Maximum Likelihood Estimation Technique (FMLET) stands as a pivotal choice. Among the vital parameters for manual diagnosis from ultrasound images, the Right Ventricular Left Ventricular Ratio (RVLVR) and the Cardiac Thoracic Ratio (CTR) play a prominent role. Employing morphological operations such as opening, closing, thinning, and thickening facilitates the extraction of diagnostically crucial features embedded within the images. The development of a Computer-Aided Decision Support (CADS) system, integrating an Adaptive Neuro Fuzzy Classifier (ANFC) proves to be instrumental. ANFC stands out as a better classifier and demonstrates self-learning capabilities similar to that of experts, resulting in a higher diagnostic accuracy rate. The presented Computer-Aided Diagnostic System (CADS) exhibited a notable diagnostic accuracy of 91%, supported by a standardized Area Under the Receiver Operating Characteristic (ROC) curve of 0.92. These results emphasize the system's robustness and effectiveness in diagnosing prenatal CHA, particularly HLHS. Graphical abstract Architecture of the proposed CAD system</description><identifier>ISSN: 1573-7721</identifier><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-023-17847-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Classifiers ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Decision support systems ; Diagnostic systems ; Heart ; Maximum likelihood estimation ; Medical imaging ; Morphology ; Multimedia Information Systems ; Special Purpose and Application-Based Systems ; Track 6: Computer Vision for Multimedia Applications ; Ultrasonic imaging</subject><ispartof>Multimedia tools and applications, 2023-12, Vol.83 (20), p.59317-59333</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-52c9aff1b6b8663a1e6525da1f894419bcdd5f753b5cf2574e23725115edd4d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-023-17847-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-023-17847-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Kavitha, D.</creatorcontrib><creatorcontrib>Geetha, S.</creatorcontrib><creatorcontrib>Geetha, R.</creatorcontrib><creatorcontrib>Kadry, Seifedine</creatorcontrib><title>Dynamic neuro fuzzy diagnosis of fetal hypoplastic cardiac syndrome using ultrasound images</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Congenital heart anomalies (CHA) represent a substantial risk to neonates, with 28% to 48% of cases resulting in life-threatening conditions. Consequently, careful prenatal screening is crucial for effective management. Within the spectrum of 18 CHA types, identifying the irregularities in heart morphology, notably the underdeveloped left heart chamber, poses a significant challenge. Hypoplastic Left Heart Syndrome (HLHS), an infrequent yet critical CHA demands diagnosis between the 17th and 21st week of growth. Despite the efficacy of ultrasound imaging, the diagnosis remains intricate due to speckle noise and the complex nature of heart chamber appearances. Selecting an accurate pre-processing algorithm is crucial, and the Fuzzy-based Maximum Likelihood Estimation Technique (FMLET) stands as a pivotal choice. Among the vital parameters for manual diagnosis from ultrasound images, the Right Ventricular Left Ventricular Ratio (RVLVR) and the Cardiac Thoracic Ratio (CTR) play a prominent role. Employing morphological operations such as opening, closing, thinning, and thickening facilitates the extraction of diagnostically crucial features embedded within the images. The development of a Computer-Aided Decision Support (CADS) system, integrating an Adaptive Neuro Fuzzy Classifier (ANFC) proves to be instrumental. ANFC stands out as a better classifier and demonstrates self-learning capabilities similar to that of experts, resulting in a higher diagnostic accuracy rate. The presented Computer-Aided Diagnostic System (CADS) exhibited a notable diagnostic accuracy of 91%, supported by a standardized Area Under the Receiver Operating Characteristic (ROC) curve of 0.92. These results emphasize the system's robustness and effectiveness in diagnosing prenatal CHA, particularly HLHS. Graphical abstract Architecture of the proposed CAD system</description><subject>Algorithms</subject><subject>Classifiers</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Decision support systems</subject><subject>Diagnostic systems</subject><subject>Heart</subject><subject>Maximum likelihood estimation</subject><subject>Medical imaging</subject><subject>Morphology</subject><subject>Multimedia Information Systems</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Track 6: Computer Vision for Multimedia Applications</subject><subject>Ultrasonic imaging</subject><issn>1573-7721</issn><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOxDAQRS0EEsvCD1BZojb4EcdJiZanhEQDFYXl-BGyytrBTors12MIElRUM8W5d0YHgHOCLwnG4ioRgguKMGWIiKoQqD4AK8IFQ0JQcvhnPwYnKW0xJiWnxQq83cxe7ToNvZ1igG7a72doOtX6kLoEg4POjqqH7_MQhl6lMaNaxUxomGZvYthZOKXOt3Dqx6hSmLyB3U61Np2CI6f6ZM9-5hq83t2-bB7Q0_P94-b6CWkq8Ig41bVyjjRlU5UlU8Tm17hRxFV1UZC60cZwJzhruHaUi8JSJignhFtjCsPYGlwsvUMMH5NNo9yGKfp8UjJcspphXleZogulY0gpWieHmP-MsyRYfkmUi0SZJcpvibLOIbaEUoZ9a-Nv9T-pTygidho</recordid><startdate>20231221</startdate><enddate>20231221</enddate><creator>Kavitha, D.</creator><creator>Geetha, S.</creator><creator>Geetha, R.</creator><creator>Kadry, Seifedine</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20231221</creationdate><title>Dynamic neuro fuzzy diagnosis of fetal hypoplastic cardiac syndrome using ultrasound images</title><author>Kavitha, D. ; Geetha, S. ; Geetha, R. ; Kadry, Seifedine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-52c9aff1b6b8663a1e6525da1f894419bcdd5f753b5cf2574e23725115edd4d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Classifiers</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Decision support systems</topic><topic>Diagnostic systems</topic><topic>Heart</topic><topic>Maximum likelihood estimation</topic><topic>Medical imaging</topic><topic>Morphology</topic><topic>Multimedia Information Systems</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Track 6: Computer Vision for Multimedia Applications</topic><topic>Ultrasonic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kavitha, D.</creatorcontrib><creatorcontrib>Geetha, S.</creatorcontrib><creatorcontrib>Geetha, R.</creatorcontrib><creatorcontrib>Kadry, Seifedine</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kavitha, D.</au><au>Geetha, S.</au><au>Geetha, R.</au><au>Kadry, Seifedine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic neuro fuzzy diagnosis of fetal hypoplastic cardiac syndrome using ultrasound images</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2023-12-21</date><risdate>2023</risdate><volume>83</volume><issue>20</issue><spage>59317</spage><epage>59333</epage><pages>59317-59333</pages><issn>1573-7721</issn><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Congenital heart anomalies (CHA) represent a substantial risk to neonates, with 28% to 48% of cases resulting in life-threatening conditions. Consequently, careful prenatal screening is crucial for effective management. Within the spectrum of 18 CHA types, identifying the irregularities in heart morphology, notably the underdeveloped left heart chamber, poses a significant challenge. Hypoplastic Left Heart Syndrome (HLHS), an infrequent yet critical CHA demands diagnosis between the 17th and 21st week of growth. Despite the efficacy of ultrasound imaging, the diagnosis remains intricate due to speckle noise and the complex nature of heart chamber appearances. Selecting an accurate pre-processing algorithm is crucial, and the Fuzzy-based Maximum Likelihood Estimation Technique (FMLET) stands as a pivotal choice. Among the vital parameters for manual diagnosis from ultrasound images, the Right Ventricular Left Ventricular Ratio (RVLVR) and the Cardiac Thoracic Ratio (CTR) play a prominent role. Employing morphological operations such as opening, closing, thinning, and thickening facilitates the extraction of diagnostically crucial features embedded within the images. The development of a Computer-Aided Decision Support (CADS) system, integrating an Adaptive Neuro Fuzzy Classifier (ANFC) proves to be instrumental. ANFC stands out as a better classifier and demonstrates self-learning capabilities similar to that of experts, resulting in a higher diagnostic accuracy rate. The presented Computer-Aided Diagnostic System (CADS) exhibited a notable diagnostic accuracy of 91%, supported by a standardized Area Under the Receiver Operating Characteristic (ROC) curve of 0.92. These results emphasize the system's robustness and effectiveness in diagnosing prenatal CHA, particularly HLHS. Graphical abstract Architecture of the proposed CAD system</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-023-17847-9</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1573-7721
ispartof Multimedia tools and applications, 2023-12, Vol.83 (20), p.59317-59333
issn 1573-7721
1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_3063930598
source SpringerLink Journals
subjects Algorithms
Classifiers
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Decision support systems
Diagnostic systems
Heart
Maximum likelihood estimation
Medical imaging
Morphology
Multimedia Information Systems
Special Purpose and Application-Based Systems
Track 6: Computer Vision for Multimedia Applications
Ultrasonic imaging
title Dynamic neuro fuzzy diagnosis of fetal hypoplastic cardiac syndrome using ultrasound images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T10%3A11%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20neuro%20fuzzy%20diagnosis%20of%20fetal%20hypoplastic%20cardiac%20syndrome%20using%20ultrasound%20images&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Kavitha,%20D.&rft.date=2023-12-21&rft.volume=83&rft.issue=20&rft.spage=59317&rft.epage=59333&rft.pages=59317-59333&rft.issn=1573-7721&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-023-17847-9&rft_dat=%3Cproquest_cross%3E3063930598%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3063930598&rft_id=info:pmid/&rfr_iscdi=true