Nash states versus eigenstates for many-body quantum systems
Eigenstates of observables such as the Hamiltonian play a central role in quantum mechanics. Inspired by the pure Nash equilibria that arise in classical game theory, we propose ''Nash states'' of multiple observables as a generalization of eigenstates of single observables. This...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-05 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Lin, Chuqiao Bulchandani, Vir B Sondhi, Shivaji L |
description | Eigenstates of observables such as the Hamiltonian play a central role in quantum mechanics. Inspired by the pure Nash equilibria that arise in classical game theory, we propose ''Nash states'' of multiple observables as a generalization of eigenstates of single observables. This generalization is mathematically natural for many-body quantum systems, which possess an intrinsic tensor product structure. Every set of observables gives rise to algebraic varieties of Nash state vectors that we call ''Nash varieties''. We present analytical and numerical results on the existence of Nash states and on the geometry of Nash varieties. We relate these ideas to earlier, pioneering work on the Nash equilibria of few-body quantum games and discuss connections to the variational minimization of local Hamiltonians. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3063929234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3063929234</sourcerecordid><originalsourceid>FETCH-proquest_journals_30639292343</originalsourceid><addsrcrecordid>eNqNikEKwjAQAIMgWLR_CHgOxN22WvAmiidP3kukW7WYxGYTob_XQx_gaWBmZiIDxI3aFQALkTP3WmuotlCWmIn9xfBDcjSRWH4ocGJJzzu5SXU-SGvcqG6-HeWQjIvJSh45kuWVmHfmxZRPXIr16Xg9nNU7-CERx6b3KbhfalBXWEMNWOB_1xeQVjhP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3063929234</pqid></control><display><type>article</type><title>Nash states versus eigenstates for many-body quantum systems</title><source>Free E- Journals</source><creator>Lin, Chuqiao ; Bulchandani, Vir B ; Sondhi, Shivaji L</creator><creatorcontrib>Lin, Chuqiao ; Bulchandani, Vir B ; Sondhi, Shivaji L</creatorcontrib><description>Eigenstates of observables such as the Hamiltonian play a central role in quantum mechanics. Inspired by the pure Nash equilibria that arise in classical game theory, we propose ''Nash states'' of multiple observables as a generalization of eigenstates of single observables. This generalization is mathematically natural for many-body quantum systems, which possess an intrinsic tensor product structure. Every set of observables gives rise to algebraic varieties of Nash state vectors that we call ''Nash varieties''. We present analytical and numerical results on the existence of Nash states and on the geometry of Nash varieties. We relate these ideas to earlier, pioneering work on the Nash equilibria of few-body quantum games and discuss connections to the variational minimization of local Hamiltonians.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Eigenvectors ; Game theory ; Hamiltonian functions ; Quantum mechanics ; State vectors ; Tensors</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Lin, Chuqiao</creatorcontrib><creatorcontrib>Bulchandani, Vir B</creatorcontrib><creatorcontrib>Sondhi, Shivaji L</creatorcontrib><title>Nash states versus eigenstates for many-body quantum systems</title><title>arXiv.org</title><description>Eigenstates of observables such as the Hamiltonian play a central role in quantum mechanics. Inspired by the pure Nash equilibria that arise in classical game theory, we propose ''Nash states'' of multiple observables as a generalization of eigenstates of single observables. This generalization is mathematically natural for many-body quantum systems, which possess an intrinsic tensor product structure. Every set of observables gives rise to algebraic varieties of Nash state vectors that we call ''Nash varieties''. We present analytical and numerical results on the existence of Nash states and on the geometry of Nash varieties. We relate these ideas to earlier, pioneering work on the Nash equilibria of few-body quantum games and discuss connections to the variational minimization of local Hamiltonians.</description><subject>Eigenvectors</subject><subject>Game theory</subject><subject>Hamiltonian functions</subject><subject>Quantum mechanics</subject><subject>State vectors</subject><subject>Tensors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNikEKwjAQAIMgWLR_CHgOxN22WvAmiidP3kukW7WYxGYTob_XQx_gaWBmZiIDxI3aFQALkTP3WmuotlCWmIn9xfBDcjSRWH4ocGJJzzu5SXU-SGvcqG6-HeWQjIvJSh45kuWVmHfmxZRPXIr16Xg9nNU7-CERx6b3KbhfalBXWEMNWOB_1xeQVjhP</recordid><startdate>20240531</startdate><enddate>20240531</enddate><creator>Lin, Chuqiao</creator><creator>Bulchandani, Vir B</creator><creator>Sondhi, Shivaji L</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240531</creationdate><title>Nash states versus eigenstates for many-body quantum systems</title><author>Lin, Chuqiao ; Bulchandani, Vir B ; Sondhi, Shivaji L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30639292343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Eigenvectors</topic><topic>Game theory</topic><topic>Hamiltonian functions</topic><topic>Quantum mechanics</topic><topic>State vectors</topic><topic>Tensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Lin, Chuqiao</creatorcontrib><creatorcontrib>Bulchandani, Vir B</creatorcontrib><creatorcontrib>Sondhi, Shivaji L</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Chuqiao</au><au>Bulchandani, Vir B</au><au>Sondhi, Shivaji L</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Nash states versus eigenstates for many-body quantum systems</atitle><jtitle>arXiv.org</jtitle><date>2024-05-31</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Eigenstates of observables such as the Hamiltonian play a central role in quantum mechanics. Inspired by the pure Nash equilibria that arise in classical game theory, we propose ''Nash states'' of multiple observables as a generalization of eigenstates of single observables. This generalization is mathematically natural for many-body quantum systems, which possess an intrinsic tensor product structure. Every set of observables gives rise to algebraic varieties of Nash state vectors that we call ''Nash varieties''. We present analytical and numerical results on the existence of Nash states and on the geometry of Nash varieties. We relate these ideas to earlier, pioneering work on the Nash equilibria of few-body quantum games and discuss connections to the variational minimization of local Hamiltonians.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3063929234 |
source | Free E- Journals |
subjects | Eigenvectors Game theory Hamiltonian functions Quantum mechanics State vectors Tensors |
title | Nash states versus eigenstates for many-body quantum systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A59%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Nash%20states%20versus%20eigenstates%20for%20many-body%20quantum%20systems&rft.jtitle=arXiv.org&rft.au=Lin,%20Chuqiao&rft.date=2024-05-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3063929234%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3063929234&rft_id=info:pmid/&rfr_iscdi=true |