Table-top nanodiamond interferometer enabling quantum gravity tests

Unifying quantum theory and general relativity is the holy grail of contemporary physics. Nonetheless, the lack of experimental evidence driving this process led to a plethora of mathematical models with a substantial impossibility of discriminating among them or even establishing if gravity really...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-05
Hauptverfasser: Vicentini, Marta, Bernardi, Ettore, Moreva, Ekaterina, Piacentini, Fabrizio, Napoli, Carmine, Degiovanni, Ivo Pietro, Manzin, Alessandra, Genovese, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Vicentini, Marta
Bernardi, Ettore
Moreva, Ekaterina
Piacentini, Fabrizio
Napoli, Carmine
Degiovanni, Ivo Pietro
Manzin, Alessandra
Genovese, Marco
description Unifying quantum theory and general relativity is the holy grail of contemporary physics. Nonetheless, the lack of experimental evidence driving this process led to a plethora of mathematical models with a substantial impossibility of discriminating among them or even establishing if gravity really needs to be quantized or if, vice versa, quantum mechanics must be "gravitized" at some scale. Recently, it has been proposed that the observation of the generation of entanglement by gravitational interaction, could represent a breakthrough demonstrating the quantum nature of gravity. A few experimental proposals have been advanced in this sense, but the extreme technological requirements (e.g., the need for free-falling gravitationally-interacting masses in a quantum superposition state) make their implementation still far ahead. Here we present a feasibility study for a table-top nanodiamond-based interferometer eventually enabling easier and less resource-demanding quantum gravity tests. With respect to the aforementioned proposals, by relying on quantum superpositions of steady massive (mesoscopic) objects our interferometer may allow exploiting just small-range electromagnetic fields (much easier to implement and control) and, at the same time, the re-utilization of the massive quantum probes exploited, inevitably lost in free-falling interferometric schemes.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3063927180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3063927180</sourcerecordid><originalsourceid>FETCH-proquest_journals_30639271803</originalsourceid><addsrcrecordid>eNqNyksKwjAUheEgCBbtHgKOA2nSl-OiuIDOS6S3JaW5afMQ3L0ZuABH54fzHUgmpCxYWwpxIrn3C-dc1I2oKpmRrlevFViwG0WFdtTKWBypxgBuAmcNpKCASWmc6R4Vhmjo7NRbhw8N4IO_kOOkVg_5b8_k-rj33ZNtzu4xiWGx0WG6BslreRNN0XL5n_oCdew7NQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3063927180</pqid></control><display><type>article</type><title>Table-top nanodiamond interferometer enabling quantum gravity tests</title><source>Free E- Journals</source><creator>Vicentini, Marta ; Bernardi, Ettore ; Moreva, Ekaterina ; Piacentini, Fabrizio ; Napoli, Carmine ; Degiovanni, Ivo Pietro ; Manzin, Alessandra ; Genovese, Marco</creator><creatorcontrib>Vicentini, Marta ; Bernardi, Ettore ; Moreva, Ekaterina ; Piacentini, Fabrizio ; Napoli, Carmine ; Degiovanni, Ivo Pietro ; Manzin, Alessandra ; Genovese, Marco</creatorcontrib><description>Unifying quantum theory and general relativity is the holy grail of contemporary physics. Nonetheless, the lack of experimental evidence driving this process led to a plethora of mathematical models with a substantial impossibility of discriminating among them or even establishing if gravity really needs to be quantized or if, vice versa, quantum mechanics must be "gravitized" at some scale. Recently, it has been proposed that the observation of the generation of entanglement by gravitational interaction, could represent a breakthrough demonstrating the quantum nature of gravity. A few experimental proposals have been advanced in this sense, but the extreme technological requirements (e.g., the need for free-falling gravitationally-interacting masses in a quantum superposition state) make their implementation still far ahead. Here we present a feasibility study for a table-top nanodiamond-based interferometer eventually enabling easier and less resource-demanding quantum gravity tests. With respect to the aforementioned proposals, by relying on quantum superpositions of steady massive (mesoscopic) objects our interferometer may allow exploiting just small-range electromagnetic fields (much easier to implement and control) and, at the same time, the re-utilization of the massive quantum probes exploited, inevitably lost in free-falling interferometric schemes.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Diamonds ; Electromagnetic fields ; Falling ; Feasibility studies ; Gravity ; Interferometers ; Nanostructure ; Proposals ; Quantum entanglement ; Quantum gravity ; Quantum mechanics ; Quantum theory ; Relativity</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Vicentini, Marta</creatorcontrib><creatorcontrib>Bernardi, Ettore</creatorcontrib><creatorcontrib>Moreva, Ekaterina</creatorcontrib><creatorcontrib>Piacentini, Fabrizio</creatorcontrib><creatorcontrib>Napoli, Carmine</creatorcontrib><creatorcontrib>Degiovanni, Ivo Pietro</creatorcontrib><creatorcontrib>Manzin, Alessandra</creatorcontrib><creatorcontrib>Genovese, Marco</creatorcontrib><title>Table-top nanodiamond interferometer enabling quantum gravity tests</title><title>arXiv.org</title><description>Unifying quantum theory and general relativity is the holy grail of contemporary physics. Nonetheless, the lack of experimental evidence driving this process led to a plethora of mathematical models with a substantial impossibility of discriminating among them or even establishing if gravity really needs to be quantized or if, vice versa, quantum mechanics must be "gravitized" at some scale. Recently, it has been proposed that the observation of the generation of entanglement by gravitational interaction, could represent a breakthrough demonstrating the quantum nature of gravity. A few experimental proposals have been advanced in this sense, but the extreme technological requirements (e.g., the need for free-falling gravitationally-interacting masses in a quantum superposition state) make their implementation still far ahead. Here we present a feasibility study for a table-top nanodiamond-based interferometer eventually enabling easier and less resource-demanding quantum gravity tests. With respect to the aforementioned proposals, by relying on quantum superpositions of steady massive (mesoscopic) objects our interferometer may allow exploiting just small-range electromagnetic fields (much easier to implement and control) and, at the same time, the re-utilization of the massive quantum probes exploited, inevitably lost in free-falling interferometric schemes.</description><subject>Diamonds</subject><subject>Electromagnetic fields</subject><subject>Falling</subject><subject>Feasibility studies</subject><subject>Gravity</subject><subject>Interferometers</subject><subject>Nanostructure</subject><subject>Proposals</subject><subject>Quantum entanglement</subject><subject>Quantum gravity</subject><subject>Quantum mechanics</subject><subject>Quantum theory</subject><subject>Relativity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyksKwjAUheEgCBbtHgKOA2nSl-OiuIDOS6S3JaW5afMQ3L0ZuABH54fzHUgmpCxYWwpxIrn3C-dc1I2oKpmRrlevFViwG0WFdtTKWBypxgBuAmcNpKCASWmc6R4Vhmjo7NRbhw8N4IO_kOOkVg_5b8_k-rj33ZNtzu4xiWGx0WG6BslreRNN0XL5n_oCdew7NQ</recordid><startdate>20240531</startdate><enddate>20240531</enddate><creator>Vicentini, Marta</creator><creator>Bernardi, Ettore</creator><creator>Moreva, Ekaterina</creator><creator>Piacentini, Fabrizio</creator><creator>Napoli, Carmine</creator><creator>Degiovanni, Ivo Pietro</creator><creator>Manzin, Alessandra</creator><creator>Genovese, Marco</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240531</creationdate><title>Table-top nanodiamond interferometer enabling quantum gravity tests</title><author>Vicentini, Marta ; Bernardi, Ettore ; Moreva, Ekaterina ; Piacentini, Fabrizio ; Napoli, Carmine ; Degiovanni, Ivo Pietro ; Manzin, Alessandra ; Genovese, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30639271803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Diamonds</topic><topic>Electromagnetic fields</topic><topic>Falling</topic><topic>Feasibility studies</topic><topic>Gravity</topic><topic>Interferometers</topic><topic>Nanostructure</topic><topic>Proposals</topic><topic>Quantum entanglement</topic><topic>Quantum gravity</topic><topic>Quantum mechanics</topic><topic>Quantum theory</topic><topic>Relativity</topic><toplevel>online_resources</toplevel><creatorcontrib>Vicentini, Marta</creatorcontrib><creatorcontrib>Bernardi, Ettore</creatorcontrib><creatorcontrib>Moreva, Ekaterina</creatorcontrib><creatorcontrib>Piacentini, Fabrizio</creatorcontrib><creatorcontrib>Napoli, Carmine</creatorcontrib><creatorcontrib>Degiovanni, Ivo Pietro</creatorcontrib><creatorcontrib>Manzin, Alessandra</creatorcontrib><creatorcontrib>Genovese, Marco</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vicentini, Marta</au><au>Bernardi, Ettore</au><au>Moreva, Ekaterina</au><au>Piacentini, Fabrizio</au><au>Napoli, Carmine</au><au>Degiovanni, Ivo Pietro</au><au>Manzin, Alessandra</au><au>Genovese, Marco</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Table-top nanodiamond interferometer enabling quantum gravity tests</atitle><jtitle>arXiv.org</jtitle><date>2024-05-31</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Unifying quantum theory and general relativity is the holy grail of contemporary physics. Nonetheless, the lack of experimental evidence driving this process led to a plethora of mathematical models with a substantial impossibility of discriminating among them or even establishing if gravity really needs to be quantized or if, vice versa, quantum mechanics must be "gravitized" at some scale. Recently, it has been proposed that the observation of the generation of entanglement by gravitational interaction, could represent a breakthrough demonstrating the quantum nature of gravity. A few experimental proposals have been advanced in this sense, but the extreme technological requirements (e.g., the need for free-falling gravitationally-interacting masses in a quantum superposition state) make their implementation still far ahead. Here we present a feasibility study for a table-top nanodiamond-based interferometer eventually enabling easier and less resource-demanding quantum gravity tests. With respect to the aforementioned proposals, by relying on quantum superpositions of steady massive (mesoscopic) objects our interferometer may allow exploiting just small-range electromagnetic fields (much easier to implement and control) and, at the same time, the re-utilization of the massive quantum probes exploited, inevitably lost in free-falling interferometric schemes.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_3063927180
source Free E- Journals
subjects Diamonds
Electromagnetic fields
Falling
Feasibility studies
Gravity
Interferometers
Nanostructure
Proposals
Quantum entanglement
Quantum gravity
Quantum mechanics
Quantum theory
Relativity
title Table-top nanodiamond interferometer enabling quantum gravity tests
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A47%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Table-top%20nanodiamond%20interferometer%20enabling%20quantum%20gravity%20tests&rft.jtitle=arXiv.org&rft.au=Vicentini,%20Marta&rft.date=2024-05-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3063927180%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3063927180&rft_id=info:pmid/&rfr_iscdi=true