Chaotic vibrations of flexible functionally graded porous closed size-dependent cylindrical shells

In this study, new mathematical models are developed for nonlinear functionallу-grаded pоrous (PFG) nano/micro/macro closed cylindrical Kirchhoff-Love shells. The thеorу by Yang is used as a mathematical framework to model the size-dependent behaviour of composite shells. Geometric nonlinearity is i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yakovleva, T. V., Krysko, V. A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 3119
creator Yakovleva, T. V.
Krysko, V. A.
description In this study, new mathematical models are developed for nonlinear functionallу-grаded pоrous (PFG) nano/micro/macro closed cylindrical Kirchhoff-Love shells. The thеorу by Yang is used as a mathematical framework to model the size-dependent behaviour of composite shells. Geometric nonlinearity is incorporated using the T. von Karman model. The material composition of the shells is heterogeneous, consisting of ceramic and metal phases. The differential equations governing the system, along with the boundary and initial conditions, are derived using Hamilton's principle. To simplify the equations, the Faedo-Galerkin method is employed in high approximations, which reduces the governing PDEs to a Cauchy problem. The mеthоd's cоnvеrgеnce is invеstigаted to ensure accurate results. To solve the resulting Cauchy problem, several Runge-Kutta methods of different orders of accuracy are utilized. This ensures reliable and accurate solutions for the system. Various types of porosity are considered in the study. It is shown that the value of the small scale parameter has an effect on the character of the vibrations in shells. In fact, the phenomenon of hyper-chaos is revealed, indicating complex and unpredictable behaviour in the system. The study contributes to the understanding of the mechanical behaviour of porous nonlinear functionally graded cylindrical shells and sheds light on the impact of small scale parameters and porosity on their oscillations and stability.
doi_str_mv 10.1063/5.0214789
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3063827630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3063827630</sourcerecordid><originalsourceid>FETCH-LOGICAL-p639-5d8da89b9ad23f117a002d99ab0dbd086f820ec9a184a73d455b8ff1bf70f3ae3</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMoWKsH_0HAm7A12Ww2yVGKVqHgpQdvIZ82JW7WZFesv96t7ellXoZh5gHgFqMFRi15oAtU44ZxcQZmmFJcsRa352CGkGiquiHvl-CqlB1CtWCMz4BeblUagoHfQWc1hNQVmDz00f0EHR30Y2cOXxXjHn5kZZ2FfcppLNDEVCZVwq-rrOtdZ103QLOPobM5GBVh2boYyzW48CoWd3O6c7B5ftosX6r12-p1-biu-paIilpuFRdaKFsTjzFTU0crhNLIaot463mNnBEK80YxYhtKNfcea8-QJ8qRObg7xvY5fY2uDHKXxjwVL5JMZHjNWoIm1_3RVUwY_vfKPodPlfcSI3lAKKk8ISR_P9BlYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3063827630</pqid></control><display><type>conference_proceeding</type><title>Chaotic vibrations of flexible functionally graded porous closed size-dependent cylindrical shells</title><source>AIP Journals Complete</source><creator>Yakovleva, T. V. ; Krysko, V. A.</creator><contributor>Yuldashevich, Xolmonov Nurbek ; Rustamovich, Ibodulloev Sherzod ; Burxonovich, Axmedov Akrom ; Urishevich, Madjidov Inomjon</contributor><creatorcontrib>Yakovleva, T. V. ; Krysko, V. A. ; Yuldashevich, Xolmonov Nurbek ; Rustamovich, Ibodulloev Sherzod ; Burxonovich, Axmedov Akrom ; Urishevich, Madjidov Inomjon</creatorcontrib><description>In this study, new mathematical models are developed for nonlinear functionallу-grаded pоrous (PFG) nano/micro/macro closed cylindrical Kirchhoff-Love shells. The thеorу by Yang is used as a mathematical framework to model the size-dependent behaviour of composite shells. Geometric nonlinearity is incorporated using the T. von Karman model. The material composition of the shells is heterogeneous, consisting of ceramic and metal phases. The differential equations governing the system, along with the boundary and initial conditions, are derived using Hamilton's principle. To simplify the equations, the Faedo-Galerkin method is employed in high approximations, which reduces the governing PDEs to a Cauchy problem. The mеthоd's cоnvеrgеnce is invеstigаted to ensure accurate results. To solve the resulting Cauchy problem, several Runge-Kutta methods of different orders of accuracy are utilized. This ensures reliable and accurate solutions for the system. Various types of porosity are considered in the study. It is shown that the value of the small scale parameter has an effect on the character of the vibrations in shells. In fact, the phenomenon of hyper-chaos is revealed, indicating complex and unpredictable behaviour in the system. The study contributes to the understanding of the mechanical behaviour of porous nonlinear functionally graded cylindrical shells and sheds light on the impact of small scale parameters and porosity on their oscillations and stability.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0214789</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Cauchy problems ; Composite structures ; Cylindrical shells ; Differential equations ; Functionally gradient materials ; Galerkin method ; Geometric nonlinearity ; Hamilton's principle ; Initial conditions ; Mathematical analysis ; Mathematical models ; Mechanical properties ; Parameters ; Porosity ; Runge-Kutta method</subject><ispartof>AIP conference proceedings, 2024, Vol.3119 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0214789$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,778,782,787,788,792,4500,23917,23918,25127,27911,27912,76139</link.rule.ids></links><search><contributor>Yuldashevich, Xolmonov Nurbek</contributor><contributor>Rustamovich, Ibodulloev Sherzod</contributor><contributor>Burxonovich, Axmedov Akrom</contributor><contributor>Urishevich, Madjidov Inomjon</contributor><creatorcontrib>Yakovleva, T. V.</creatorcontrib><creatorcontrib>Krysko, V. A.</creatorcontrib><title>Chaotic vibrations of flexible functionally graded porous closed size-dependent cylindrical shells</title><title>AIP conference proceedings</title><description>In this study, new mathematical models are developed for nonlinear functionallу-grаded pоrous (PFG) nano/micro/macro closed cylindrical Kirchhoff-Love shells. The thеorу by Yang is used as a mathematical framework to model the size-dependent behaviour of composite shells. Geometric nonlinearity is incorporated using the T. von Karman model. The material composition of the shells is heterogeneous, consisting of ceramic and metal phases. The differential equations governing the system, along with the boundary and initial conditions, are derived using Hamilton's principle. To simplify the equations, the Faedo-Galerkin method is employed in high approximations, which reduces the governing PDEs to a Cauchy problem. The mеthоd's cоnvеrgеnce is invеstigаted to ensure accurate results. To solve the resulting Cauchy problem, several Runge-Kutta methods of different orders of accuracy are utilized. This ensures reliable and accurate solutions for the system. Various types of porosity are considered in the study. It is shown that the value of the small scale parameter has an effect on the character of the vibrations in shells. In fact, the phenomenon of hyper-chaos is revealed, indicating complex and unpredictable behaviour in the system. The study contributes to the understanding of the mechanical behaviour of porous nonlinear functionally graded cylindrical shells and sheds light on the impact of small scale parameters and porosity on their oscillations and stability.</description><subject>Cauchy problems</subject><subject>Composite structures</subject><subject>Cylindrical shells</subject><subject>Differential equations</subject><subject>Functionally gradient materials</subject><subject>Galerkin method</subject><subject>Geometric nonlinearity</subject><subject>Hamilton's principle</subject><subject>Initial conditions</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Parameters</subject><subject>Porosity</subject><subject>Runge-Kutta method</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE1LAzEYhIMoWKsH_0HAm7A12Ww2yVGKVqHgpQdvIZ82JW7WZFesv96t7ellXoZh5gHgFqMFRi15oAtU44ZxcQZmmFJcsRa352CGkGiquiHvl-CqlB1CtWCMz4BeblUagoHfQWc1hNQVmDz00f0EHR30Y2cOXxXjHn5kZZ2FfcppLNDEVCZVwq-rrOtdZ103QLOPobM5GBVh2boYyzW48CoWd3O6c7B5ftosX6r12-p1-biu-paIilpuFRdaKFsTjzFTU0crhNLIaot463mNnBEK80YxYhtKNfcea8-QJ8qRObg7xvY5fY2uDHKXxjwVL5JMZHjNWoIm1_3RVUwY_vfKPodPlfcSI3lAKKk8ISR_P9BlYA</recordid><startdate>20240603</startdate><enddate>20240603</enddate><creator>Yakovleva, T. V.</creator><creator>Krysko, V. A.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240603</creationdate><title>Chaotic vibrations of flexible functionally graded porous closed size-dependent cylindrical shells</title><author>Yakovleva, T. V. ; Krysko, V. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p639-5d8da89b9ad23f117a002d99ab0dbd086f820ec9a184a73d455b8ff1bf70f3ae3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cauchy problems</topic><topic>Composite structures</topic><topic>Cylindrical shells</topic><topic>Differential equations</topic><topic>Functionally gradient materials</topic><topic>Galerkin method</topic><topic>Geometric nonlinearity</topic><topic>Hamilton's principle</topic><topic>Initial conditions</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Parameters</topic><topic>Porosity</topic><topic>Runge-Kutta method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yakovleva, T. V.</creatorcontrib><creatorcontrib>Krysko, V. A.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yakovleva, T. V.</au><au>Krysko, V. A.</au><au>Yuldashevich, Xolmonov Nurbek</au><au>Rustamovich, Ibodulloev Sherzod</au><au>Burxonovich, Axmedov Akrom</au><au>Urishevich, Madjidov Inomjon</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Chaotic vibrations of flexible functionally graded porous closed size-dependent cylindrical shells</atitle><btitle>AIP conference proceedings</btitle><date>2024-06-03</date><risdate>2024</risdate><volume>3119</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In this study, new mathematical models are developed for nonlinear functionallу-grаded pоrous (PFG) nano/micro/macro closed cylindrical Kirchhoff-Love shells. The thеorу by Yang is used as a mathematical framework to model the size-dependent behaviour of composite shells. Geometric nonlinearity is incorporated using the T. von Karman model. The material composition of the shells is heterogeneous, consisting of ceramic and metal phases. The differential equations governing the system, along with the boundary and initial conditions, are derived using Hamilton's principle. To simplify the equations, the Faedo-Galerkin method is employed in high approximations, which reduces the governing PDEs to a Cauchy problem. The mеthоd's cоnvеrgеnce is invеstigаted to ensure accurate results. To solve the resulting Cauchy problem, several Runge-Kutta methods of different orders of accuracy are utilized. This ensures reliable and accurate solutions for the system. Various types of porosity are considered in the study. It is shown that the value of the small scale parameter has an effect on the character of the vibrations in shells. In fact, the phenomenon of hyper-chaos is revealed, indicating complex and unpredictable behaviour in the system. The study contributes to the understanding of the mechanical behaviour of porous nonlinear functionally graded cylindrical shells and sheds light on the impact of small scale parameters and porosity on their oscillations and stability.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0214789</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.3119 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_3063827630
source AIP Journals Complete
subjects Cauchy problems
Composite structures
Cylindrical shells
Differential equations
Functionally gradient materials
Galerkin method
Geometric nonlinearity
Hamilton's principle
Initial conditions
Mathematical analysis
Mathematical models
Mechanical properties
Parameters
Porosity
Runge-Kutta method
title Chaotic vibrations of flexible functionally graded porous closed size-dependent cylindrical shells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T04%3A34%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Chaotic%20vibrations%20of%20flexible%20functionally%20graded%20porous%20closed%20size-dependent%20cylindrical%20shells&rft.btitle=AIP%20conference%20proceedings&rft.au=Yakovleva,%20T.%20V.&rft.date=2024-06-03&rft.volume=3119&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0214789&rft_dat=%3Cproquest_scita%3E3063827630%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3063827630&rft_id=info:pmid/&rfr_iscdi=true