震后早期阶段余震预测研究进展

震后早期快速、准确的余震预测对震后灾害风险应对和采取有效的处置措施十分重要. 震后早期阶段地震目录不完整性是影响现有余震预测方法快速、准确预测的关键因素. 近年来,随着技术和模型的发展,使得震后早期数据缺失阶段的余震预测成为可能. 本文针对震后早期数据缺失阶段难以开展有效的余震预测问题,分别从提升余震检测率角度阐述了匹配滤波技术和深度学习技术,从统计地震学的余震补齐角度阐述了双尺度变换技术,从最大限度利用余震信息实时预测角度阐述了Omi模型和Lippiello模型等研究进展,分析了各类方法的优劣势,并提出了综合解决震后早期数据缺失阶段余震预测“瓶颈期”问题的技术路线,为从事地震检测、余震预测以...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:地球与行星物理论评 2023-01, Vol.54 (5), p.498-511
Hauptverfasser: 毕金孟, 蒋长胜, 曹付阳, Bi Jinmeng, Jiang Changsheng, Cao Fuyang
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 511
container_issue 5
container_start_page 498
container_title 地球与行星物理论评
container_volume 54
creator 毕金孟
蒋长胜
曹付阳
Bi Jinmeng
Jiang Changsheng
Cao Fuyang
description 震后早期快速、准确的余震预测对震后灾害风险应对和采取有效的处置措施十分重要. 震后早期阶段地震目录不完整性是影响现有余震预测方法快速、准确预测的关键因素. 近年来,随着技术和模型的发展,使得震后早期数据缺失阶段的余震预测成为可能. 本文针对震后早期数据缺失阶段难以开展有效的余震预测问题,分别从提升余震检测率角度阐述了匹配滤波技术和深度学习技术,从统计地震学的余震补齐角度阐述了双尺度变换技术,从最大限度利用余震信息实时预测角度阐述了Omi模型和Lippiello模型等研究进展,分析了各类方法的优劣势,并提出了综合解决震后早期数据缺失阶段余震预测“瓶颈期”问题的技术路线,为从事地震检测、余震预测以及震后趋势研判等相关工作的科研人员提供科学参考.
doi_str_mv 10.19975/j.dqyxx.2022-058
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_proquest_journals_3063524941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>sjdzyc202305002</wanfj_id><sourcerecordid>sjdzyc202305002</sourcerecordid><originalsourceid>FETCH-LOGICAL-p602-531c4b18e339f7a914674287f538e9645652d8b69287ac51a06a6ddf799acd4b3</originalsourceid><addsrcrecordid>eNpFj7tKA1EYhE-hYFjzANYWgrDr-c_9LyV4g4BN-nB2z664yOayBhNrwUIQi4iKAcUujWCRdOLLmI15Cxci2MzA8DHDELIBNABELXfSwHUG_X7AKGM-lWaFVBhF7YNBvkaqeX4aUglcA1BVIduL0fXs7rZ4GBejl8XjtHiffH8-leHi7aqY3Mxfh_Px9OfrefZxv05WE3uWx9U_90hjf69RO_TrxwdHtd2631aU-ZJDJEIwMeeYaIsglBbM6ERyE6MSUknmTKiwzGwkwVJllXOJRrSREyH3yNay9sJmic1Ommmr183KwWaeustBVP7iVNJSPbK5JNvdVqcX5-f_KKeKSyZQAP8FwYJd7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3063524941</pqid></control><display><type>article</type><title>震后早期阶段余震预测研究进展</title><source>DOAJ Directory of Open Access Journals</source><source>ProQuest Central</source><creator>毕金孟 ; 蒋长胜 ; 曹付阳 ; Bi Jinmeng ; Jiang Changsheng ; Cao Fuyang</creator><creatorcontrib>毕金孟 ; 蒋长胜 ; 曹付阳 ; Bi Jinmeng ; Jiang Changsheng ; Cao Fuyang</creatorcontrib><description>震后早期快速、准确的余震预测对震后灾害风险应对和采取有效的处置措施十分重要. 震后早期阶段地震目录不完整性是影响现有余震预测方法快速、准确预测的关键因素. 近年来,随着技术和模型的发展,使得震后早期数据缺失阶段的余震预测成为可能. 本文针对震后早期数据缺失阶段难以开展有效的余震预测问题,分别从提升余震检测率角度阐述了匹配滤波技术和深度学习技术,从统计地震学的余震补齐角度阐述了双尺度变换技术,从最大限度利用余震信息实时预测角度阐述了Omi模型和Lippiello模型等研究进展,分析了各类方法的优劣势,并提出了综合解决震后早期数据缺失阶段余震预测“瓶颈期”问题的技术路线,为从事地震检测、余震预测以及震后趋势研判等相关工作的科研人员提供科学参考.</description><identifier>ISSN: 2097-1893</identifier><identifier>ISSN: 1003-3238</identifier><identifier>DOI: 10.19975/j.dqyxx.2022-058</identifier><language>chi</language><publisher>Beijing: Editorial Office of Reviews of Geophysics and Planetary Physics</publisher><subject>Aftershocks ; Disaster risk ; Earthquakes ; Forecasting ; Seismic activity ; Seismology</subject><ispartof>地球与行星物理论评, 2023-01, Vol.54 (5), p.498-511</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/sjdzyc/sjdzyc.jpg</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3063524941?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,21367,27901,27902,33721,43781</link.rule.ids></links><search><creatorcontrib>毕金孟</creatorcontrib><creatorcontrib>蒋长胜</creatorcontrib><creatorcontrib>曹付阳</creatorcontrib><creatorcontrib>Bi Jinmeng</creatorcontrib><creatorcontrib>Jiang Changsheng</creatorcontrib><creatorcontrib>Cao Fuyang</creatorcontrib><title>震后早期阶段余震预测研究进展</title><title>地球与行星物理论评</title><description>震后早期快速、准确的余震预测对震后灾害风险应对和采取有效的处置措施十分重要. 震后早期阶段地震目录不完整性是影响现有余震预测方法快速、准确预测的关键因素. 近年来,随着技术和模型的发展,使得震后早期数据缺失阶段的余震预测成为可能. 本文针对震后早期数据缺失阶段难以开展有效的余震预测问题,分别从提升余震检测率角度阐述了匹配滤波技术和深度学习技术,从统计地震学的余震补齐角度阐述了双尺度变换技术,从最大限度利用余震信息实时预测角度阐述了Omi模型和Lippiello模型等研究进展,分析了各类方法的优劣势,并提出了综合解决震后早期数据缺失阶段余震预测“瓶颈期”问题的技术路线,为从事地震检测、余震预测以及震后趋势研判等相关工作的科研人员提供科学参考.</description><subject>Aftershocks</subject><subject>Disaster risk</subject><subject>Earthquakes</subject><subject>Forecasting</subject><subject>Seismic activity</subject><subject>Seismology</subject><issn>2097-1893</issn><issn>1003-3238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpFj7tKA1EYhE-hYFjzANYWgrDr-c_9LyV4g4BN-nB2z664yOayBhNrwUIQi4iKAcUujWCRdOLLmI15Cxci2MzA8DHDELIBNABELXfSwHUG_X7AKGM-lWaFVBhF7YNBvkaqeX4aUglcA1BVIduL0fXs7rZ4GBejl8XjtHiffH8-leHi7aqY3Mxfh_Px9OfrefZxv05WE3uWx9U_90hjf69RO_TrxwdHtd2631aU-ZJDJEIwMeeYaIsglBbM6ERyE6MSUknmTKiwzGwkwVJllXOJRrSREyH3yNay9sJmic1Ommmr183KwWaeustBVP7iVNJSPbK5JNvdVqcX5-f_KKeKSyZQAP8FwYJd7g</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>毕金孟</creator><creator>蒋长胜</creator><creator>曹付阳</creator><creator>Bi Jinmeng</creator><creator>Jiang Changsheng</creator><creator>Cao Fuyang</creator><general>Editorial Office of Reviews of Geophysics and Planetary Physics</general><general>中国地震局地球物理研究所,北京100081</general><general>天津市地震局,天津300201%中国地震局地球物理研究所,北京100081%天津市地震局,天津300201</general><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20230101</creationdate><title>震后早期阶段余震预测研究进展</title><author>毕金孟 ; 蒋长胜 ; 曹付阳 ; Bi Jinmeng ; Jiang Changsheng ; Cao Fuyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p602-531c4b18e339f7a914674287f538e9645652d8b69287ac51a06a6ddf799acd4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2023</creationdate><topic>Aftershocks</topic><topic>Disaster risk</topic><topic>Earthquakes</topic><topic>Forecasting</topic><topic>Seismic activity</topic><topic>Seismology</topic><toplevel>online_resources</toplevel><creatorcontrib>毕金孟</creatorcontrib><creatorcontrib>蒋长胜</creatorcontrib><creatorcontrib>曹付阳</creatorcontrib><creatorcontrib>Bi Jinmeng</creatorcontrib><creatorcontrib>Jiang Changsheng</creatorcontrib><creatorcontrib>Cao Fuyang</creatorcontrib><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>地球与行星物理论评</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>毕金孟</au><au>蒋长胜</au><au>曹付阳</au><au>Bi Jinmeng</au><au>Jiang Changsheng</au><au>Cao Fuyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>震后早期阶段余震预测研究进展</atitle><jtitle>地球与行星物理论评</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>54</volume><issue>5</issue><spage>498</spage><epage>511</epage><pages>498-511</pages><issn>2097-1893</issn><issn>1003-3238</issn><abstract>震后早期快速、准确的余震预测对震后灾害风险应对和采取有效的处置措施十分重要. 震后早期阶段地震目录不完整性是影响现有余震预测方法快速、准确预测的关键因素. 近年来,随着技术和模型的发展,使得震后早期数据缺失阶段的余震预测成为可能. 本文针对震后早期数据缺失阶段难以开展有效的余震预测问题,分别从提升余震检测率角度阐述了匹配滤波技术和深度学习技术,从统计地震学的余震补齐角度阐述了双尺度变换技术,从最大限度利用余震信息实时预测角度阐述了Omi模型和Lippiello模型等研究进展,分析了各类方法的优劣势,并提出了综合解决震后早期数据缺失阶段余震预测“瓶颈期”问题的技术路线,为从事地震检测、余震预测以及震后趋势研判等相关工作的科研人员提供科学参考.</abstract><cop>Beijing</cop><pub>Editorial Office of Reviews of Geophysics and Planetary Physics</pub><doi>10.19975/j.dqyxx.2022-058</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2097-1893
ispartof 地球与行星物理论评, 2023-01, Vol.54 (5), p.498-511
issn 2097-1893
1003-3238
language chi
recordid cdi_proquest_journals_3063524941
source DOAJ Directory of Open Access Journals; ProQuest Central
subjects Aftershocks
Disaster risk
Earthquakes
Forecasting
Seismic activity
Seismology
title 震后早期阶段余震预测研究进展
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A40%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E9%9C%87%E5%90%8E%E6%97%A9%E6%9C%9F%E9%98%B6%E6%AE%B5%E4%BD%99%E9%9C%87%E9%A2%84%E6%B5%8B%E7%A0%94%E7%A9%B6%E8%BF%9B%E5%B1%95&rft.jtitle=%E5%9C%B0%E7%90%83%E4%B8%8E%E8%A1%8C%E6%98%9F%E7%89%A9%E7%90%86%E8%AE%BA%E8%AF%84&rft.au=%E6%AF%95%E9%87%91%E5%AD%9F&rft.date=2023-01-01&rft.volume=54&rft.issue=5&rft.spage=498&rft.epage=511&rft.pages=498-511&rft.issn=2097-1893&rft_id=info:doi/10.19975/j.dqyxx.2022-058&rft_dat=%3Cwanfang_jour_proqu%3Esjdzyc202305002%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3063524941&rft_id=info:pmid/&rft_wanfj_id=sjdzyc202305002&rfr_iscdi=true