Two-interface and thin-filament approximation in Hele-Shaw channel flow
When a viscous fluid partially fills a Hele-Shaw channel, and is pushed by a pressure difference, the fluid interface is unstable due to the Saffman–Taylor instability. We consider the evolution of a fluid region of finite extent, bounded between two interfaces, in the limit that the interfaces are...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2024-06, Vol.988, Article A31 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of fluid mechanics |
container_volume | 988 |
creator | Dallaston, Michael C. Jackson, Michael J.W. Morrow, Liam C. McCue, Scott W. |
description | When a viscous fluid partially fills a Hele-Shaw channel, and is pushed by a pressure difference, the fluid interface is unstable due to the Saffman–Taylor instability. We consider the evolution of a fluid region of finite extent, bounded between two interfaces, in the limit that the interfaces are close, that is, when the fluid region is a thin liquid filament separating two gases of different pressure. In this limit, we derive a second-order ‘thin-filament’ model that describes the normal velocity of the filament centreline, and evolution of the filament thickness, as functions of the thickness, centreline curvature and their derivatives. We show that the second-order terms in this model, that include the effect of transverse flow along the filament, are necessary to regularise the instability. Numerical simulation of the thin-filament model is shown to be in accordance with level-set computations of the complete two-interface model. Solutions ultimately evolve to form a bubble of rapidly increasing radius and decreasing thickness. |
doi_str_mv | 10.1017/jfm.2024.456 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3063264352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2024_456</cupid><sourcerecordid>3063264352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-b0c343fecaa2c08c044a5ba01a2902a7d3c79a3ffe408e9131dae95c22a54a1c3</originalsourceid><addsrcrecordid>eNptkD1PwzAQhi0EEqWw8QMsseJw_kjSjKiCFqkSA2W2ro5NXSVOcVIV_n1dtRIL0y3Pve_dQ8g9h4wDL582rs0ECJWpvLggI66KipWFyi_JCEAIxrmAa3LT9xsALqEqR2S23HfMh8FGh8ZSDDUd1j4w5xtsbRgobrex-_EtDr4L1Ac6t41lH2vcU7PGEGxDXdPtb8mVw6a3d-c5Jp-vL8vpnC3eZ2_T5wUzoioHtgIjlXTWIAoDEwNKYb5C4CgqEFjW0pQVSuesgomtuOQ12io3QmCukBs5Jg-n3HTV9872g950uxhSpZZQSFEomYtEPZ4oE7u-j9bpbUwvxF_NQR9V6aRKH1XppCrh2RnHdhV9_WX_Uv9dOADpDWta</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3063264352</pqid></control><display><type>article</type><title>Two-interface and thin-filament approximation in Hele-Shaw channel flow</title><source>Cambridge University Press Journals Complete</source><creator>Dallaston, Michael C. ; Jackson, Michael J.W. ; Morrow, Liam C. ; McCue, Scott W.</creator><creatorcontrib>Dallaston, Michael C. ; Jackson, Michael J.W. ; Morrow, Liam C. ; McCue, Scott W.</creatorcontrib><description>When a viscous fluid partially fills a Hele-Shaw channel, and is pushed by a pressure difference, the fluid interface is unstable due to the Saffman–Taylor instability. We consider the evolution of a fluid region of finite extent, bounded between two interfaces, in the limit that the interfaces are close, that is, when the fluid region is a thin liquid filament separating two gases of different pressure. In this limit, we derive a second-order ‘thin-filament’ model that describes the normal velocity of the filament centreline, and evolution of the filament thickness, as functions of the thickness, centreline curvature and their derivatives. We show that the second-order terms in this model, that include the effect of transverse flow along the filament, are necessary to regularise the instability. Numerical simulation of the thin-filament model is shown to be in accordance with level-set computations of the complete two-interface model. Solutions ultimately evolve to form a bubble of rapidly increasing radius and decreasing thickness.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2024.456</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Approximation ; Boundary conditions ; Channel flow ; Evolution ; Flow stability ; Fluid flow ; Interface stability ; Interfaces ; JFM Papers ; Mathematical models ; Taylor instability ; Thickness ; Velocity ; Viscous fluids</subject><ispartof>Journal of fluid mechanics, 2024-06, Vol.988, Article A31</ispartof><rights>The Author(s), 2024. Published by Cambridge University Press.</rights><rights>The Author(s), 2024. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c297t-b0c343fecaa2c08c044a5ba01a2902a7d3c79a3ffe408e9131dae95c22a54a1c3</cites><orcidid>0009-0002-7671-1389 ; 0000-0001-8993-6961 ; 0000-0001-5304-2384</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112024004567/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Dallaston, Michael C.</creatorcontrib><creatorcontrib>Jackson, Michael J.W.</creatorcontrib><creatorcontrib>Morrow, Liam C.</creatorcontrib><creatorcontrib>McCue, Scott W.</creatorcontrib><title>Two-interface and thin-filament approximation in Hele-Shaw channel flow</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>When a viscous fluid partially fills a Hele-Shaw channel, and is pushed by a pressure difference, the fluid interface is unstable due to the Saffman–Taylor instability. We consider the evolution of a fluid region of finite extent, bounded between two interfaces, in the limit that the interfaces are close, that is, when the fluid region is a thin liquid filament separating two gases of different pressure. In this limit, we derive a second-order ‘thin-filament’ model that describes the normal velocity of the filament centreline, and evolution of the filament thickness, as functions of the thickness, centreline curvature and their derivatives. We show that the second-order terms in this model, that include the effect of transverse flow along the filament, are necessary to regularise the instability. Numerical simulation of the thin-filament model is shown to be in accordance with level-set computations of the complete two-interface model. Solutions ultimately evolve to form a bubble of rapidly increasing radius and decreasing thickness.</description><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Channel flow</subject><subject>Evolution</subject><subject>Flow stability</subject><subject>Fluid flow</subject><subject>Interface stability</subject><subject>Interfaces</subject><subject>JFM Papers</subject><subject>Mathematical models</subject><subject>Taylor instability</subject><subject>Thickness</subject><subject>Velocity</subject><subject>Viscous fluids</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><recordid>eNptkD1PwzAQhi0EEqWw8QMsseJw_kjSjKiCFqkSA2W2ro5NXSVOcVIV_n1dtRIL0y3Pve_dQ8g9h4wDL582rs0ECJWpvLggI66KipWFyi_JCEAIxrmAa3LT9xsALqEqR2S23HfMh8FGh8ZSDDUd1j4w5xtsbRgobrex-_EtDr4L1Ac6t41lH2vcU7PGEGxDXdPtb8mVw6a3d-c5Jp-vL8vpnC3eZ2_T5wUzoioHtgIjlXTWIAoDEwNKYb5C4CgqEFjW0pQVSuesgomtuOQ12io3QmCukBs5Jg-n3HTV9872g950uxhSpZZQSFEomYtEPZ4oE7u-j9bpbUwvxF_NQR9V6aRKH1XppCrh2RnHdhV9_WX_Uv9dOADpDWta</recordid><startdate>20240603</startdate><enddate>20240603</enddate><creator>Dallaston, Michael C.</creator><creator>Jackson, Michael J.W.</creator><creator>Morrow, Liam C.</creator><creator>McCue, Scott W.</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0002-7671-1389</orcidid><orcidid>https://orcid.org/0000-0001-8993-6961</orcidid><orcidid>https://orcid.org/0000-0001-5304-2384</orcidid></search><sort><creationdate>20240603</creationdate><title>Two-interface and thin-filament approximation in Hele-Shaw channel flow</title><author>Dallaston, Michael C. ; Jackson, Michael J.W. ; Morrow, Liam C. ; McCue, Scott W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-b0c343fecaa2c08c044a5ba01a2902a7d3c79a3ffe408e9131dae95c22a54a1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Channel flow</topic><topic>Evolution</topic><topic>Flow stability</topic><topic>Fluid flow</topic><topic>Interface stability</topic><topic>Interfaces</topic><topic>JFM Papers</topic><topic>Mathematical models</topic><topic>Taylor instability</topic><topic>Thickness</topic><topic>Velocity</topic><topic>Viscous fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dallaston, Michael C.</creatorcontrib><creatorcontrib>Jackson, Michael J.W.</creatorcontrib><creatorcontrib>Morrow, Liam C.</creatorcontrib><creatorcontrib>McCue, Scott W.</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dallaston, Michael C.</au><au>Jackson, Michael J.W.</au><au>Morrow, Liam C.</au><au>McCue, Scott W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-interface and thin-filament approximation in Hele-Shaw channel flow</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2024-06-03</date><risdate>2024</risdate><volume>988</volume><artnum>A31</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>When a viscous fluid partially fills a Hele-Shaw channel, and is pushed by a pressure difference, the fluid interface is unstable due to the Saffman–Taylor instability. We consider the evolution of a fluid region of finite extent, bounded between two interfaces, in the limit that the interfaces are close, that is, when the fluid region is a thin liquid filament separating two gases of different pressure. In this limit, we derive a second-order ‘thin-filament’ model that describes the normal velocity of the filament centreline, and evolution of the filament thickness, as functions of the thickness, centreline curvature and their derivatives. We show that the second-order terms in this model, that include the effect of transverse flow along the filament, are necessary to regularise the instability. Numerical simulation of the thin-filament model is shown to be in accordance with level-set computations of the complete two-interface model. Solutions ultimately evolve to form a bubble of rapidly increasing radius and decreasing thickness.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2024.456</doi><tpages>27</tpages><orcidid>https://orcid.org/0009-0002-7671-1389</orcidid><orcidid>https://orcid.org/0000-0001-8993-6961</orcidid><orcidid>https://orcid.org/0000-0001-5304-2384</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2024-06, Vol.988, Article A31 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_3063264352 |
source | Cambridge University Press Journals Complete |
subjects | Approximation Boundary conditions Channel flow Evolution Flow stability Fluid flow Interface stability Interfaces JFM Papers Mathematical models Taylor instability Thickness Velocity Viscous fluids |
title | Two-interface and thin-filament approximation in Hele-Shaw channel flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A32%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-interface%20and%20thin-filament%20approximation%20in%20Hele-Shaw%20channel%20flow&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Dallaston,%20Michael%20C.&rft.date=2024-06-03&rft.volume=988&rft.artnum=A31&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2024.456&rft_dat=%3Cproquest_cross%3E3063264352%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3063264352&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2024_456&rfr_iscdi=true |