Stabilization of age‐structured chemostat hyperbolic PDE with actuator dynamics
For population systems modeled by age‐structured hyperbolic partial differential equations (PDEs), we redesign the existing feedback laws, designed under the assumption that the dilution input is directly actuated, to the more realistic case where dilution is governed by actuation dynamics (modeled...
Gespeichert in:
Veröffentlicht in: | International journal of robust and nonlinear control 2024-07, Vol.34 (10), p.6741-6763 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6763 |
---|---|
container_issue | 10 |
container_start_page | 6741 |
container_title | International journal of robust and nonlinear control |
container_volume | 34 |
creator | Haacker, Paul‐Erik Karafyllis, Iasson Krstić, Miroslav Diagne, Mamadou |
description | For population systems modeled by age‐structured hyperbolic partial differential equations (PDEs), we redesign the existing feedback laws, designed under the assumption that the dilution input is directly actuated, to the more realistic case where dilution is governed by actuation dynamics (modeled simply by an integrator). In addition to the standard constraint that the population density must remain positive, the dilution dynamics introduce constraints of not only positivity of dilution, but possibly of given positive lower and upper bounds on dilution. We present several designs, of varying complexity, and with various measurement requirements, which not only ensure global asymptotic (and local exponential) stabilization of a desired positive population density profile from all positive initial conditions, but do so without violating the constraints on the dilution state. To develop the results, we exploit the relation between first‐order hyperbolic PDEs and an equivalent representation in which a scalar input‐driven mode is decoupled from input‐free infinite‐dimensional internal dynamics represented by an integral delay system. |
doi_str_mv | 10.1002/rnc.7181 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3063194463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3063194463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2931-1784816ce2dfe4c61ac1ebcdb4d9c7dc604fd3955c4f44676a22b41b356fce013</originalsourceid><addsrcrecordid>eNp10M1KAzEQB_AgCtYq-AgBL162ZpJ0d3OU2qpQ_PYcstmsTdluapKlrCcfwWf0Sdxar55mYH4zA3-EToGMgBB64Rs9yiCHPTQAIkQClIn9bc9FkgvKDtFRCEtC-hnlA_T4HFVha_uhonUNdhVWb-b78ytE3-rYelNivTArF6KKeNGtjS9cbTV-uJrijY0LrHqlovO47Bq1sjoco4NK1cGc_NUhep1NXyY3yfz--nZyOU80FQwSyHKeQ6oNLSvDdQpKgyl0WfBS6KzUKeFVycR4rHnFeZqlitKCQ8HGaaUNATZEZ7u7a-_eWxOiXLrWN_1LyUjKQPRbrFfnO6W9C8GbSq69XSnfSSByG5jsA5PbwHqa7OjG1qb718mnu8mv_wF0k24W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3063194463</pqid></control><display><type>article</type><title>Stabilization of age‐structured chemostat hyperbolic PDE with actuator dynamics</title><source>Access via Wiley Online Library</source><creator>Haacker, Paul‐Erik ; Karafyllis, Iasson ; Krstić, Miroslav ; Diagne, Mamadou</creator><creatorcontrib>Haacker, Paul‐Erik ; Karafyllis, Iasson ; Krstić, Miroslav ; Diagne, Mamadou</creatorcontrib><description>For population systems modeled by age‐structured hyperbolic partial differential equations (PDEs), we redesign the existing feedback laws, designed under the assumption that the dilution input is directly actuated, to the more realistic case where dilution is governed by actuation dynamics (modeled simply by an integrator). In addition to the standard constraint that the population density must remain positive, the dilution dynamics introduce constraints of not only positivity of dilution, but possibly of given positive lower and upper bounds on dilution. We present several designs, of varying complexity, and with various measurement requirements, which not only ensure global asymptotic (and local exponential) stabilization of a desired positive population density profile from all positive initial conditions, but do so without violating the constraints on the dilution state. To develop the results, we exploit the relation between first‐order hyperbolic PDEs and an equivalent representation in which a scalar input‐driven mode is decoupled from input‐free infinite‐dimensional internal dynamics represented by an integral delay system.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.7181</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Actuation ; Actuators ; Asymptotic methods ; Bioreactors ; chemostat ; Dilution ; Dynamics ; first‐order hyperbolic PDE ; Hyperbolic differential equations ; Initial conditions ; Partial differential equations ; Population density ; Redesign ; Stabilization ; state constraints ; time‐delay systems ; Upper bounds</subject><ispartof>International journal of robust and nonlinear control, 2024-07, Vol.34 (10), p.6741-6763</ispartof><rights>2024 John Wiley & Sons Ltd.</rights><rights>2024 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2931-1784816ce2dfe4c61ac1ebcdb4d9c7dc604fd3955c4f44676a22b41b356fce013</citedby><cites>FETCH-LOGICAL-c2931-1784816ce2dfe4c61ac1ebcdb4d9c7dc604fd3955c4f44676a22b41b356fce013</cites><orcidid>0000-0001-5597-7669</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.7181$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.7181$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Haacker, Paul‐Erik</creatorcontrib><creatorcontrib>Karafyllis, Iasson</creatorcontrib><creatorcontrib>Krstić, Miroslav</creatorcontrib><creatorcontrib>Diagne, Mamadou</creatorcontrib><title>Stabilization of age‐structured chemostat hyperbolic PDE with actuator dynamics</title><title>International journal of robust and nonlinear control</title><description>For population systems modeled by age‐structured hyperbolic partial differential equations (PDEs), we redesign the existing feedback laws, designed under the assumption that the dilution input is directly actuated, to the more realistic case where dilution is governed by actuation dynamics (modeled simply by an integrator). In addition to the standard constraint that the population density must remain positive, the dilution dynamics introduce constraints of not only positivity of dilution, but possibly of given positive lower and upper bounds on dilution. We present several designs, of varying complexity, and with various measurement requirements, which not only ensure global asymptotic (and local exponential) stabilization of a desired positive population density profile from all positive initial conditions, but do so without violating the constraints on the dilution state. To develop the results, we exploit the relation between first‐order hyperbolic PDEs and an equivalent representation in which a scalar input‐driven mode is decoupled from input‐free infinite‐dimensional internal dynamics represented by an integral delay system.</description><subject>Actuation</subject><subject>Actuators</subject><subject>Asymptotic methods</subject><subject>Bioreactors</subject><subject>chemostat</subject><subject>Dilution</subject><subject>Dynamics</subject><subject>first‐order hyperbolic PDE</subject><subject>Hyperbolic differential equations</subject><subject>Initial conditions</subject><subject>Partial differential equations</subject><subject>Population density</subject><subject>Redesign</subject><subject>Stabilization</subject><subject>state constraints</subject><subject>time‐delay systems</subject><subject>Upper bounds</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10M1KAzEQB_AgCtYq-AgBL162ZpJ0d3OU2qpQ_PYcstmsTdluapKlrCcfwWf0Sdxar55mYH4zA3-EToGMgBB64Rs9yiCHPTQAIkQClIn9bc9FkgvKDtFRCEtC-hnlA_T4HFVha_uhonUNdhVWb-b78ytE3-rYelNivTArF6KKeNGtjS9cbTV-uJrijY0LrHqlovO47Bq1sjoco4NK1cGc_NUhep1NXyY3yfz--nZyOU80FQwSyHKeQ6oNLSvDdQpKgyl0WfBS6KzUKeFVycR4rHnFeZqlitKCQ8HGaaUNATZEZ7u7a-_eWxOiXLrWN_1LyUjKQPRbrFfnO6W9C8GbSq69XSnfSSByG5jsA5PbwHqa7OjG1qb718mnu8mv_wF0k24W</recordid><startdate>20240710</startdate><enddate>20240710</enddate><creator>Haacker, Paul‐Erik</creator><creator>Karafyllis, Iasson</creator><creator>Krstić, Miroslav</creator><creator>Diagne, Mamadou</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5597-7669</orcidid></search><sort><creationdate>20240710</creationdate><title>Stabilization of age‐structured chemostat hyperbolic PDE with actuator dynamics</title><author>Haacker, Paul‐Erik ; Karafyllis, Iasson ; Krstić, Miroslav ; Diagne, Mamadou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2931-1784816ce2dfe4c61ac1ebcdb4d9c7dc604fd3955c4f44676a22b41b356fce013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actuation</topic><topic>Actuators</topic><topic>Asymptotic methods</topic><topic>Bioreactors</topic><topic>chemostat</topic><topic>Dilution</topic><topic>Dynamics</topic><topic>first‐order hyperbolic PDE</topic><topic>Hyperbolic differential equations</topic><topic>Initial conditions</topic><topic>Partial differential equations</topic><topic>Population density</topic><topic>Redesign</topic><topic>Stabilization</topic><topic>state constraints</topic><topic>time‐delay systems</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haacker, Paul‐Erik</creatorcontrib><creatorcontrib>Karafyllis, Iasson</creatorcontrib><creatorcontrib>Krstić, Miroslav</creatorcontrib><creatorcontrib>Diagne, Mamadou</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haacker, Paul‐Erik</au><au>Karafyllis, Iasson</au><au>Krstić, Miroslav</au><au>Diagne, Mamadou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilization of age‐structured chemostat hyperbolic PDE with actuator dynamics</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2024-07-10</date><risdate>2024</risdate><volume>34</volume><issue>10</issue><spage>6741</spage><epage>6763</epage><pages>6741-6763</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>For population systems modeled by age‐structured hyperbolic partial differential equations (PDEs), we redesign the existing feedback laws, designed under the assumption that the dilution input is directly actuated, to the more realistic case where dilution is governed by actuation dynamics (modeled simply by an integrator). In addition to the standard constraint that the population density must remain positive, the dilution dynamics introduce constraints of not only positivity of dilution, but possibly of given positive lower and upper bounds on dilution. We present several designs, of varying complexity, and with various measurement requirements, which not only ensure global asymptotic (and local exponential) stabilization of a desired positive population density profile from all positive initial conditions, but do so without violating the constraints on the dilution state. To develop the results, we exploit the relation between first‐order hyperbolic PDEs and an equivalent representation in which a scalar input‐driven mode is decoupled from input‐free infinite‐dimensional internal dynamics represented by an integral delay system.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rnc.7181</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-5597-7669</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1049-8923 |
ispartof | International journal of robust and nonlinear control, 2024-07, Vol.34 (10), p.6741-6763 |
issn | 1049-8923 1099-1239 |
language | eng |
recordid | cdi_proquest_journals_3063194463 |
source | Access via Wiley Online Library |
subjects | Actuation Actuators Asymptotic methods Bioreactors chemostat Dilution Dynamics first‐order hyperbolic PDE Hyperbolic differential equations Initial conditions Partial differential equations Population density Redesign Stabilization state constraints time‐delay systems Upper bounds |
title | Stabilization of age‐structured chemostat hyperbolic PDE with actuator dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A11%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilization%20of%20age%E2%80%90structured%20chemostat%20hyperbolic%20PDE%20with%20actuator%20dynamics&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Haacker,%20Paul%E2%80%90Erik&rft.date=2024-07-10&rft.volume=34&rft.issue=10&rft.spage=6741&rft.epage=6763&rft.pages=6741-6763&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.7181&rft_dat=%3Cproquest_cross%3E3063194463%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3063194463&rft_id=info:pmid/&rfr_iscdi=true |