Stabilization of age‐structured chemostat hyperbolic PDE with actuator dynamics

For population systems modeled by age‐structured hyperbolic partial differential equations (PDEs), we redesign the existing feedback laws, designed under the assumption that the dilution input is directly actuated, to the more realistic case where dilution is governed by actuation dynamics (modeled...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of robust and nonlinear control 2024-07, Vol.34 (10), p.6741-6763
Hauptverfasser: Haacker, Paul‐Erik, Karafyllis, Iasson, Krstić, Miroslav, Diagne, Mamadou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6763
container_issue 10
container_start_page 6741
container_title International journal of robust and nonlinear control
container_volume 34
creator Haacker, Paul‐Erik
Karafyllis, Iasson
Krstić, Miroslav
Diagne, Mamadou
description For population systems modeled by age‐structured hyperbolic partial differential equations (PDEs), we redesign the existing feedback laws, designed under the assumption that the dilution input is directly actuated, to the more realistic case where dilution is governed by actuation dynamics (modeled simply by an integrator). In addition to the standard constraint that the population density must remain positive, the dilution dynamics introduce constraints of not only positivity of dilution, but possibly of given positive lower and upper bounds on dilution. We present several designs, of varying complexity, and with various measurement requirements, which not only ensure global asymptotic (and local exponential) stabilization of a desired positive population density profile from all positive initial conditions, but do so without violating the constraints on the dilution state. To develop the results, we exploit the relation between first‐order hyperbolic PDEs and an equivalent representation in which a scalar input‐driven mode is decoupled from input‐free infinite‐dimensional internal dynamics represented by an integral delay system.
doi_str_mv 10.1002/rnc.7181
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3063194463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3063194463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2931-1784816ce2dfe4c61ac1ebcdb4d9c7dc604fd3955c4f44676a22b41b356fce013</originalsourceid><addsrcrecordid>eNp10M1KAzEQB_AgCtYq-AgBL162ZpJ0d3OU2qpQ_PYcstmsTdluapKlrCcfwWf0Sdxar55mYH4zA3-EToGMgBB64Rs9yiCHPTQAIkQClIn9bc9FkgvKDtFRCEtC-hnlA_T4HFVha_uhonUNdhVWb-b78ytE3-rYelNivTArF6KKeNGtjS9cbTV-uJrijY0LrHqlovO47Bq1sjoco4NK1cGc_NUhep1NXyY3yfz--nZyOU80FQwSyHKeQ6oNLSvDdQpKgyl0WfBS6KzUKeFVycR4rHnFeZqlitKCQ8HGaaUNATZEZ7u7a-_eWxOiXLrWN_1LyUjKQPRbrFfnO6W9C8GbSq69XSnfSSByG5jsA5PbwHqa7OjG1qb718mnu8mv_wF0k24W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3063194463</pqid></control><display><type>article</type><title>Stabilization of age‐structured chemostat hyperbolic PDE with actuator dynamics</title><source>Access via Wiley Online Library</source><creator>Haacker, Paul‐Erik ; Karafyllis, Iasson ; Krstić, Miroslav ; Diagne, Mamadou</creator><creatorcontrib>Haacker, Paul‐Erik ; Karafyllis, Iasson ; Krstić, Miroslav ; Diagne, Mamadou</creatorcontrib><description>For population systems modeled by age‐structured hyperbolic partial differential equations (PDEs), we redesign the existing feedback laws, designed under the assumption that the dilution input is directly actuated, to the more realistic case where dilution is governed by actuation dynamics (modeled simply by an integrator). In addition to the standard constraint that the population density must remain positive, the dilution dynamics introduce constraints of not only positivity of dilution, but possibly of given positive lower and upper bounds on dilution. We present several designs, of varying complexity, and with various measurement requirements, which not only ensure global asymptotic (and local exponential) stabilization of a desired positive population density profile from all positive initial conditions, but do so without violating the constraints on the dilution state. To develop the results, we exploit the relation between first‐order hyperbolic PDEs and an equivalent representation in which a scalar input‐driven mode is decoupled from input‐free infinite‐dimensional internal dynamics represented by an integral delay system.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.7181</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Actuation ; Actuators ; Asymptotic methods ; Bioreactors ; chemostat ; Dilution ; Dynamics ; first‐order hyperbolic PDE ; Hyperbolic differential equations ; Initial conditions ; Partial differential equations ; Population density ; Redesign ; Stabilization ; state constraints ; time‐delay systems ; Upper bounds</subject><ispartof>International journal of robust and nonlinear control, 2024-07, Vol.34 (10), p.6741-6763</ispartof><rights>2024 John Wiley &amp; Sons Ltd.</rights><rights>2024 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2931-1784816ce2dfe4c61ac1ebcdb4d9c7dc604fd3955c4f44676a22b41b356fce013</citedby><cites>FETCH-LOGICAL-c2931-1784816ce2dfe4c61ac1ebcdb4d9c7dc604fd3955c4f44676a22b41b356fce013</cites><orcidid>0000-0001-5597-7669</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.7181$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.7181$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Haacker, Paul‐Erik</creatorcontrib><creatorcontrib>Karafyllis, Iasson</creatorcontrib><creatorcontrib>Krstić, Miroslav</creatorcontrib><creatorcontrib>Diagne, Mamadou</creatorcontrib><title>Stabilization of age‐structured chemostat hyperbolic PDE with actuator dynamics</title><title>International journal of robust and nonlinear control</title><description>For population systems modeled by age‐structured hyperbolic partial differential equations (PDEs), we redesign the existing feedback laws, designed under the assumption that the dilution input is directly actuated, to the more realistic case where dilution is governed by actuation dynamics (modeled simply by an integrator). In addition to the standard constraint that the population density must remain positive, the dilution dynamics introduce constraints of not only positivity of dilution, but possibly of given positive lower and upper bounds on dilution. We present several designs, of varying complexity, and with various measurement requirements, which not only ensure global asymptotic (and local exponential) stabilization of a desired positive population density profile from all positive initial conditions, but do so without violating the constraints on the dilution state. To develop the results, we exploit the relation between first‐order hyperbolic PDEs and an equivalent representation in which a scalar input‐driven mode is decoupled from input‐free infinite‐dimensional internal dynamics represented by an integral delay system.</description><subject>Actuation</subject><subject>Actuators</subject><subject>Asymptotic methods</subject><subject>Bioreactors</subject><subject>chemostat</subject><subject>Dilution</subject><subject>Dynamics</subject><subject>first‐order hyperbolic PDE</subject><subject>Hyperbolic differential equations</subject><subject>Initial conditions</subject><subject>Partial differential equations</subject><subject>Population density</subject><subject>Redesign</subject><subject>Stabilization</subject><subject>state constraints</subject><subject>time‐delay systems</subject><subject>Upper bounds</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10M1KAzEQB_AgCtYq-AgBL162ZpJ0d3OU2qpQ_PYcstmsTdluapKlrCcfwWf0Sdxar55mYH4zA3-EToGMgBB64Rs9yiCHPTQAIkQClIn9bc9FkgvKDtFRCEtC-hnlA_T4HFVha_uhonUNdhVWb-b78ytE3-rYelNivTArF6KKeNGtjS9cbTV-uJrijY0LrHqlovO47Bq1sjoco4NK1cGc_NUhep1NXyY3yfz--nZyOU80FQwSyHKeQ6oNLSvDdQpKgyl0WfBS6KzUKeFVycR4rHnFeZqlitKCQ8HGaaUNATZEZ7u7a-_eWxOiXLrWN_1LyUjKQPRbrFfnO6W9C8GbSq69XSnfSSByG5jsA5PbwHqa7OjG1qb718mnu8mv_wF0k24W</recordid><startdate>20240710</startdate><enddate>20240710</enddate><creator>Haacker, Paul‐Erik</creator><creator>Karafyllis, Iasson</creator><creator>Krstić, Miroslav</creator><creator>Diagne, Mamadou</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5597-7669</orcidid></search><sort><creationdate>20240710</creationdate><title>Stabilization of age‐structured chemostat hyperbolic PDE with actuator dynamics</title><author>Haacker, Paul‐Erik ; Karafyllis, Iasson ; Krstić, Miroslav ; Diagne, Mamadou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2931-1784816ce2dfe4c61ac1ebcdb4d9c7dc604fd3955c4f44676a22b41b356fce013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actuation</topic><topic>Actuators</topic><topic>Asymptotic methods</topic><topic>Bioreactors</topic><topic>chemostat</topic><topic>Dilution</topic><topic>Dynamics</topic><topic>first‐order hyperbolic PDE</topic><topic>Hyperbolic differential equations</topic><topic>Initial conditions</topic><topic>Partial differential equations</topic><topic>Population density</topic><topic>Redesign</topic><topic>Stabilization</topic><topic>state constraints</topic><topic>time‐delay systems</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haacker, Paul‐Erik</creatorcontrib><creatorcontrib>Karafyllis, Iasson</creatorcontrib><creatorcontrib>Krstić, Miroslav</creatorcontrib><creatorcontrib>Diagne, Mamadou</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haacker, Paul‐Erik</au><au>Karafyllis, Iasson</au><au>Krstić, Miroslav</au><au>Diagne, Mamadou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilization of age‐structured chemostat hyperbolic PDE with actuator dynamics</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2024-07-10</date><risdate>2024</risdate><volume>34</volume><issue>10</issue><spage>6741</spage><epage>6763</epage><pages>6741-6763</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>For population systems modeled by age‐structured hyperbolic partial differential equations (PDEs), we redesign the existing feedback laws, designed under the assumption that the dilution input is directly actuated, to the more realistic case where dilution is governed by actuation dynamics (modeled simply by an integrator). In addition to the standard constraint that the population density must remain positive, the dilution dynamics introduce constraints of not only positivity of dilution, but possibly of given positive lower and upper bounds on dilution. We present several designs, of varying complexity, and with various measurement requirements, which not only ensure global asymptotic (and local exponential) stabilization of a desired positive population density profile from all positive initial conditions, but do so without violating the constraints on the dilution state. To develop the results, we exploit the relation between first‐order hyperbolic PDEs and an equivalent representation in which a scalar input‐driven mode is decoupled from input‐free infinite‐dimensional internal dynamics represented by an integral delay system.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rnc.7181</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-5597-7669</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1049-8923
ispartof International journal of robust and nonlinear control, 2024-07, Vol.34 (10), p.6741-6763
issn 1049-8923
1099-1239
language eng
recordid cdi_proquest_journals_3063194463
source Access via Wiley Online Library
subjects Actuation
Actuators
Asymptotic methods
Bioreactors
chemostat
Dilution
Dynamics
first‐order hyperbolic PDE
Hyperbolic differential equations
Initial conditions
Partial differential equations
Population density
Redesign
Stabilization
state constraints
time‐delay systems
Upper bounds
title Stabilization of age‐structured chemostat hyperbolic PDE with actuator dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A11%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilization%20of%20age%E2%80%90structured%20chemostat%20hyperbolic%20PDE%20with%20actuator%20dynamics&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Haacker,%20Paul%E2%80%90Erik&rft.date=2024-07-10&rft.volume=34&rft.issue=10&rft.spage=6741&rft.epage=6763&rft.pages=6741-6763&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.7181&rft_dat=%3Cproquest_cross%3E3063194463%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3063194463&rft_id=info:pmid/&rfr_iscdi=true