New approximations for network reliability

We introduce two new methods for approximating the all‐terminal reliability of undirected graphs. First, we introduce an edge removal process: remove edges at random, one at a time, until the graph becomes disconnected. We show that the expected number of edges thus removed is equal to (m+1)A$$ \lef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Networks 2024-07, Vol.84 (1), p.51-63
Hauptverfasser: Brown, Jason I., Kolokolnikov, Theodore, Kooij, Robert E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 63
container_issue 1
container_start_page 51
container_title Networks
container_volume 84
creator Brown, Jason I.
Kolokolnikov, Theodore
Kooij, Robert E.
description We introduce two new methods for approximating the all‐terminal reliability of undirected graphs. First, we introduce an edge removal process: remove edges at random, one at a time, until the graph becomes disconnected. We show that the expected number of edges thus removed is equal to (m+1)A$$ \left(m+1\right)A $$, where m$$ m $$ is the number of edges in the graph, and A$$ A $$ is the average of the all‐terminal reliability polynomial. Based on this process, we propose a Monte‐Carlo algorithm to quickly estimate the graph reliability (whose exact computation is NP‐hard). Moreover, we show that the distribution of the edge removal process can be used to quickly approximate the reliability polynomial. We then propose increasingly accurate asymptotics for graph reliability based solely on degree distributions of the graph. These asymptotics are tested against several real‐world networks and are shown to be accurate for sufficiently dense graphs. While the approach starts to fail for “subway‐like” networks that contain many paths of vertices of degree two, different asymptotics are derived for such networks.
doi_str_mv 10.1002/net.22215
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3062892504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3062892504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2925-f8b08a93c79588e97416f90795ab5a1162a2bb96c84d3388dad2cc0044dfeac03</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMoWFcPfoOCJ4XuTv61yVGWXRWW9bKeQ5qmkLW2NelS--2N1qunYZjfvDdvELrFsMQAZNXaYUkIwfwMJRhkkQHQ4hwlcSYyCoxfoqsQjgAYcywS9LC3Y6r73ndf7kMPrmtDWnc-jTpj599TbxunS9e4YbpGF7Vugr35qwv0tt0c1s_Z7vXpZf24ywyRhGe1KEFoSU0huRBWFgzntYTY6ZJrjHOiSVnK3AhWUSpEpStiDABjVW21AbpAd7NuPOrzZMOgjt3Jt9FSUciJiCbAInU_U8Z3IXhbq97HBH5SGNTPK1SMoH5fEdnVzI6usdP_oNpvDvPGN6OsXro</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3062892504</pqid></control><display><type>article</type><title>New approximations for network reliability</title><source>Access via Wiley Online Library</source><creator>Brown, Jason I. ; Kolokolnikov, Theodore ; Kooij, Robert E.</creator><creatorcontrib>Brown, Jason I. ; Kolokolnikov, Theodore ; Kooij, Robert E.</creatorcontrib><description>We introduce two new methods for approximating the all‐terminal reliability of undirected graphs. First, we introduce an edge removal process: remove edges at random, one at a time, until the graph becomes disconnected. We show that the expected number of edges thus removed is equal to (m+1)A$$ \left(m+1\right)A $$, where m$$ m $$ is the number of edges in the graph, and A$$ A $$ is the average of the all‐terminal reliability polynomial. Based on this process, we propose a Monte‐Carlo algorithm to quickly estimate the graph reliability (whose exact computation is NP‐hard). Moreover, we show that the distribution of the edge removal process can be used to quickly approximate the reliability polynomial. We then propose increasingly accurate asymptotics for graph reliability based solely on degree distributions of the graph. These asymptotics are tested against several real‐world networks and are shown to be accurate for sufficiently dense graphs. While the approach starts to fail for “subway‐like” networks that contain many paths of vertices of degree two, different asymptotics are derived for such networks.</description><identifier>ISSN: 0028-3045</identifier><identifier>EISSN: 1097-0037</identifier><identifier>DOI: 10.1002/net.22215</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; Apexes ; Approximation ; Asymptotic properties ; average reliability ; first order approximation ; Graph theory ; Graphs ; Monte Carlo ; Network reliability ; Polynomials ; regular graph ; second order approximation ; subway‐like network</subject><ispartof>Networks, 2024-07, Vol.84 (1), p.51-63</ispartof><rights>2024 The Authors. published by Wiley Periodicals LLC.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2925-f8b08a93c79588e97416f90795ab5a1162a2bb96c84d3388dad2cc0044dfeac03</cites><orcidid>0000-0002-4721-8985</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnet.22215$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnet.22215$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Brown, Jason I.</creatorcontrib><creatorcontrib>Kolokolnikov, Theodore</creatorcontrib><creatorcontrib>Kooij, Robert E.</creatorcontrib><title>New approximations for network reliability</title><title>Networks</title><description>We introduce two new methods for approximating the all‐terminal reliability of undirected graphs. First, we introduce an edge removal process: remove edges at random, one at a time, until the graph becomes disconnected. We show that the expected number of edges thus removed is equal to (m+1)A$$ \left(m+1\right)A $$, where m$$ m $$ is the number of edges in the graph, and A$$ A $$ is the average of the all‐terminal reliability polynomial. Based on this process, we propose a Monte‐Carlo algorithm to quickly estimate the graph reliability (whose exact computation is NP‐hard). Moreover, we show that the distribution of the edge removal process can be used to quickly approximate the reliability polynomial. We then propose increasingly accurate asymptotics for graph reliability based solely on degree distributions of the graph. These asymptotics are tested against several real‐world networks and are shown to be accurate for sufficiently dense graphs. While the approach starts to fail for “subway‐like” networks that contain many paths of vertices of degree two, different asymptotics are derived for such networks.</description><subject>Algorithms</subject><subject>Apexes</subject><subject>Approximation</subject><subject>Asymptotic properties</subject><subject>average reliability</subject><subject>first order approximation</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Monte Carlo</subject><subject>Network reliability</subject><subject>Polynomials</subject><subject>regular graph</subject><subject>second order approximation</subject><subject>subway‐like network</subject><issn>0028-3045</issn><issn>1097-0037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kE9LxDAQxYMoWFcPfoOCJ4XuTv61yVGWXRWW9bKeQ5qmkLW2NelS--2N1qunYZjfvDdvELrFsMQAZNXaYUkIwfwMJRhkkQHQ4hwlcSYyCoxfoqsQjgAYcywS9LC3Y6r73ndf7kMPrmtDWnc-jTpj599TbxunS9e4YbpGF7Vugr35qwv0tt0c1s_Z7vXpZf24ywyRhGe1KEFoSU0huRBWFgzntYTY6ZJrjHOiSVnK3AhWUSpEpStiDABjVW21AbpAd7NuPOrzZMOgjt3Jt9FSUciJiCbAInU_U8Z3IXhbq97HBH5SGNTPK1SMoH5fEdnVzI6usdP_oNpvDvPGN6OsXro</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Brown, Jason I.</creator><creator>Kolokolnikov, Theodore</creator><creator>Kooij, Robert E.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4721-8985</orcidid></search><sort><creationdate>202407</creationdate><title>New approximations for network reliability</title><author>Brown, Jason I. ; Kolokolnikov, Theodore ; Kooij, Robert E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2925-f8b08a93c79588e97416f90795ab5a1162a2bb96c84d3388dad2cc0044dfeac03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Apexes</topic><topic>Approximation</topic><topic>Asymptotic properties</topic><topic>average reliability</topic><topic>first order approximation</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Monte Carlo</topic><topic>Network reliability</topic><topic>Polynomials</topic><topic>regular graph</topic><topic>second order approximation</topic><topic>subway‐like network</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brown, Jason I.</creatorcontrib><creatorcontrib>Kolokolnikov, Theodore</creatorcontrib><creatorcontrib>Kooij, Robert E.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brown, Jason I.</au><au>Kolokolnikov, Theodore</au><au>Kooij, Robert E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New approximations for network reliability</atitle><jtitle>Networks</jtitle><date>2024-07</date><risdate>2024</risdate><volume>84</volume><issue>1</issue><spage>51</spage><epage>63</epage><pages>51-63</pages><issn>0028-3045</issn><eissn>1097-0037</eissn><abstract>We introduce two new methods for approximating the all‐terminal reliability of undirected graphs. First, we introduce an edge removal process: remove edges at random, one at a time, until the graph becomes disconnected. We show that the expected number of edges thus removed is equal to (m+1)A$$ \left(m+1\right)A $$, where m$$ m $$ is the number of edges in the graph, and A$$ A $$ is the average of the all‐terminal reliability polynomial. Based on this process, we propose a Monte‐Carlo algorithm to quickly estimate the graph reliability (whose exact computation is NP‐hard). Moreover, we show that the distribution of the edge removal process can be used to quickly approximate the reliability polynomial. We then propose increasingly accurate asymptotics for graph reliability based solely on degree distributions of the graph. These asymptotics are tested against several real‐world networks and are shown to be accurate for sufficiently dense graphs. While the approach starts to fail for “subway‐like” networks that contain many paths of vertices of degree two, different asymptotics are derived for such networks.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/net.22215</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4721-8985</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-3045
ispartof Networks, 2024-07, Vol.84 (1), p.51-63
issn 0028-3045
1097-0037
language eng
recordid cdi_proquest_journals_3062892504
source Access via Wiley Online Library
subjects Algorithms
Apexes
Approximation
Asymptotic properties
average reliability
first order approximation
Graph theory
Graphs
Monte Carlo
Network reliability
Polynomials
regular graph
second order approximation
subway‐like network
title New approximations for network reliability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A34%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20approximations%20for%20network%20reliability&rft.jtitle=Networks&rft.au=Brown,%20Jason%20I.&rft.date=2024-07&rft.volume=84&rft.issue=1&rft.spage=51&rft.epage=63&rft.pages=51-63&rft.issn=0028-3045&rft.eissn=1097-0037&rft_id=info:doi/10.1002/net.22215&rft_dat=%3Cproquest_cross%3E3062892504%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3062892504&rft_id=info:pmid/&rfr_iscdi=true