High strength and anti‐swelling hydrogel strain sensors based on amphiphilic polyurethane assemblies for human‐motion detection

Hydrogel sensors are widely used in electronic skin, soft robotics, bioengineering, and medical therapy due to their excellent electrical conductivity, mechanical flexibility, and better biocompatibility. However, the swelling property of hydrogels has been hindering their application in underwater...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer engineering and science 2024-06, Vol.64 (6), p.2675-2689
Hauptverfasser: Lei, Lingling, Chen, Baocheng, Wang, Shiyu, Cheng, Xu, Qiu, Jinghong, Wang, Haibo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2689
container_issue 6
container_start_page 2675
container_title Polymer engineering and science
container_volume 64
creator Lei, Lingling
Chen, Baocheng
Wang, Shiyu
Cheng, Xu
Qiu, Jinghong
Wang, Haibo
description Hydrogel sensors are widely used in electronic skin, soft robotics, bioengineering, and medical therapy due to their excellent electrical conductivity, mechanical flexibility, and better biocompatibility. However, the swelling property of hydrogels has been hindering their application in underwater scenarios. Therefore, in this study, to address the anti‐swelling behavior of hydrogels, MXene nanosheets were modified by 1H,1H,2H,2H‐perfluorooctyltrimethoxysilane and then compounded with acrylamide and polyurethane to obtain multifunctional conductive hydrogels (PAM‐WPU/FMX hydrogels). Through the synergistic effect of chemical cross‐linking and hydrogen bonding on the gel network, the hydrogel sensor was characterized by strong resistance to swelling (swelling ratio = 2.22), excellent mechanical properties (strain at break after swelling equilibrium = 418.6%), and high strain sensitivity. For underwater applications, this study offers a model technique for the quick gelation of strong, swelling‐resistant hydrogels. Highlights Amphiphilic polyurethane micelles provided energy dissipation. Modified MXene was hydrophobic and electrically conductive. The strain of the hydrogel obtained after MXene modification was enhanced. The structural recovery capacity of both hydrogels was more than 60%. The modified hydrogel swollen but still had excellent sensing properties. Diagrammatic representation of (A) the preparation of the FMXene(FMX), and (B) the fabrication process of the PAM‐WPU/FMX hydrogels.
doi_str_mv 10.1002/pen.26718
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3062892404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3062892404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2578-115e56997ce06119e6bad91aae7f0fad6fb3c3eaa6a02dc0c7f8afebcb6792063</originalsourceid><addsrcrecordid>eNp1kEFOwzAQRS0EEqWw4AaWWLFIazuNkyxRVShSBSxgHU2cSeMqsYOdquoOiQtwRk6CS9kizWhm8f7_0ifkmrMJZ0xMezQTIVOenZART2ZZJGQ8OyUjxmIRxVmWnZML7zcssHGSj8jnUq8b6geHZj00FEwVdtDfH19-h22rzZo2-8rZNbYHCrShHo23ztMSPFbUGgpd3-gwrVa0t-1-63BowCAF77ErW42e1tbRZtuBCc6dHXSQVTigOnyX5KyG1uPV3x2Tt_vF63wZrZ4fHud3q0iJJM0izhNMZJ6nCpnkPEdZQpVzAExrVkMl6zJWMQJIYKJSTKV1BjWWqpRpLpiMx-Tm6Ns7-75FPxQbu3UmRBYxkyLLxYzNAnV7pJSz3jusi97pDty-4Kw4dFyEjovfjgM7PbI73eL-f7B4WTwdFT-iDoQm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3062892404</pqid></control><display><type>article</type><title>High strength and anti‐swelling hydrogel strain sensors based on amphiphilic polyurethane assemblies for human‐motion detection</title><source>Access via Wiley Online Library</source><creator>Lei, Lingling ; Chen, Baocheng ; Wang, Shiyu ; Cheng, Xu ; Qiu, Jinghong ; Wang, Haibo</creator><creatorcontrib>Lei, Lingling ; Chen, Baocheng ; Wang, Shiyu ; Cheng, Xu ; Qiu, Jinghong ; Wang, Haibo</creatorcontrib><description>Hydrogel sensors are widely used in electronic skin, soft robotics, bioengineering, and medical therapy due to their excellent electrical conductivity, mechanical flexibility, and better biocompatibility. However, the swelling property of hydrogels has been hindering their application in underwater scenarios. Therefore, in this study, to address the anti‐swelling behavior of hydrogels, MXene nanosheets were modified by 1H,1H,2H,2H‐perfluorooctyltrimethoxysilane and then compounded with acrylamide and polyurethane to obtain multifunctional conductive hydrogels (PAM‐WPU/FMX hydrogels). Through the synergistic effect of chemical cross‐linking and hydrogen bonding on the gel network, the hydrogel sensor was characterized by strong resistance to swelling (swelling ratio = 2.22), excellent mechanical properties (strain at break after swelling equilibrium = 418.6%), and high strain sensitivity. For underwater applications, this study offers a model technique for the quick gelation of strong, swelling‐resistant hydrogels. Highlights Amphiphilic polyurethane micelles provided energy dissipation. Modified MXene was hydrophobic and electrically conductive. The strain of the hydrogel obtained after MXene modification was enhanced. The structural recovery capacity of both hydrogels was more than 60%. The modified hydrogel swollen but still had excellent sensing properties. Diagrammatic representation of (A) the preparation of the FMXene(FMX), and (B) the fabrication process of the PAM‐WPU/FMX hydrogels.</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.26718</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Acrylamide ; Automation ; Biocompatibility ; Bioengineering ; Bonding strength ; Electrical resistivity ; Energy dissipation ; Human motion ; hydrogel ; Hydrogels ; Hydrogen bonding ; Manufacturing engineering ; Mechanical properties ; Micelles ; Motion perception ; MXene ; MXenes ; Polyurethane resins ; Robotics ; sensor ; Sensors ; Strain ; Swelling ratio ; swelling‐resistant ; Synergistic effect ; Underwater</subject><ispartof>Polymer engineering and science, 2024-06, Vol.64 (6), p.2675-2689</ispartof><rights>2024 Society of Plastics Engineers.</rights><rights>2024 Society of Plastics Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2578-115e56997ce06119e6bad91aae7f0fad6fb3c3eaa6a02dc0c7f8afebcb6792063</cites><orcidid>0000-0001-5321-8888</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpen.26718$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpen.26718$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Lei, Lingling</creatorcontrib><creatorcontrib>Chen, Baocheng</creatorcontrib><creatorcontrib>Wang, Shiyu</creatorcontrib><creatorcontrib>Cheng, Xu</creatorcontrib><creatorcontrib>Qiu, Jinghong</creatorcontrib><creatorcontrib>Wang, Haibo</creatorcontrib><title>High strength and anti‐swelling hydrogel strain sensors based on amphiphilic polyurethane assemblies for human‐motion detection</title><title>Polymer engineering and science</title><description>Hydrogel sensors are widely used in electronic skin, soft robotics, bioengineering, and medical therapy due to their excellent electrical conductivity, mechanical flexibility, and better biocompatibility. However, the swelling property of hydrogels has been hindering their application in underwater scenarios. Therefore, in this study, to address the anti‐swelling behavior of hydrogels, MXene nanosheets were modified by 1H,1H,2H,2H‐perfluorooctyltrimethoxysilane and then compounded with acrylamide and polyurethane to obtain multifunctional conductive hydrogels (PAM‐WPU/FMX hydrogels). Through the synergistic effect of chemical cross‐linking and hydrogen bonding on the gel network, the hydrogel sensor was characterized by strong resistance to swelling (swelling ratio = 2.22), excellent mechanical properties (strain at break after swelling equilibrium = 418.6%), and high strain sensitivity. For underwater applications, this study offers a model technique for the quick gelation of strong, swelling‐resistant hydrogels. Highlights Amphiphilic polyurethane micelles provided energy dissipation. Modified MXene was hydrophobic and electrically conductive. The strain of the hydrogel obtained after MXene modification was enhanced. The structural recovery capacity of both hydrogels was more than 60%. The modified hydrogel swollen but still had excellent sensing properties. Diagrammatic representation of (A) the preparation of the FMXene(FMX), and (B) the fabrication process of the PAM‐WPU/FMX hydrogels.</description><subject>Acrylamide</subject><subject>Automation</subject><subject>Biocompatibility</subject><subject>Bioengineering</subject><subject>Bonding strength</subject><subject>Electrical resistivity</subject><subject>Energy dissipation</subject><subject>Human motion</subject><subject>hydrogel</subject><subject>Hydrogels</subject><subject>Hydrogen bonding</subject><subject>Manufacturing engineering</subject><subject>Mechanical properties</subject><subject>Micelles</subject><subject>Motion perception</subject><subject>MXene</subject><subject>MXenes</subject><subject>Polyurethane resins</subject><subject>Robotics</subject><subject>sensor</subject><subject>Sensors</subject><subject>Strain</subject><subject>Swelling ratio</subject><subject>swelling‐resistant</subject><subject>Synergistic effect</subject><subject>Underwater</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kEFOwzAQRS0EEqWw4AaWWLFIazuNkyxRVShSBSxgHU2cSeMqsYOdquoOiQtwRk6CS9kizWhm8f7_0ifkmrMJZ0xMezQTIVOenZART2ZZJGQ8OyUjxmIRxVmWnZML7zcssHGSj8jnUq8b6geHZj00FEwVdtDfH19-h22rzZo2-8rZNbYHCrShHo23ztMSPFbUGgpd3-gwrVa0t-1-63BowCAF77ErW42e1tbRZtuBCc6dHXSQVTigOnyX5KyG1uPV3x2Tt_vF63wZrZ4fHud3q0iJJM0izhNMZJ6nCpnkPEdZQpVzAExrVkMl6zJWMQJIYKJSTKV1BjWWqpRpLpiMx-Tm6Ns7-75FPxQbu3UmRBYxkyLLxYzNAnV7pJSz3jusi97pDty-4Kw4dFyEjovfjgM7PbI73eL-f7B4WTwdFT-iDoQm</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Lei, Lingling</creator><creator>Chen, Baocheng</creator><creator>Wang, Shiyu</creator><creator>Cheng, Xu</creator><creator>Qiu, Jinghong</creator><creator>Wang, Haibo</creator><general>John Wiley &amp; Sons, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-5321-8888</orcidid></search><sort><creationdate>202406</creationdate><title>High strength and anti‐swelling hydrogel strain sensors based on amphiphilic polyurethane assemblies for human‐motion detection</title><author>Lei, Lingling ; Chen, Baocheng ; Wang, Shiyu ; Cheng, Xu ; Qiu, Jinghong ; Wang, Haibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2578-115e56997ce06119e6bad91aae7f0fad6fb3c3eaa6a02dc0c7f8afebcb6792063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acrylamide</topic><topic>Automation</topic><topic>Biocompatibility</topic><topic>Bioengineering</topic><topic>Bonding strength</topic><topic>Electrical resistivity</topic><topic>Energy dissipation</topic><topic>Human motion</topic><topic>hydrogel</topic><topic>Hydrogels</topic><topic>Hydrogen bonding</topic><topic>Manufacturing engineering</topic><topic>Mechanical properties</topic><topic>Micelles</topic><topic>Motion perception</topic><topic>MXene</topic><topic>MXenes</topic><topic>Polyurethane resins</topic><topic>Robotics</topic><topic>sensor</topic><topic>Sensors</topic><topic>Strain</topic><topic>Swelling ratio</topic><topic>swelling‐resistant</topic><topic>Synergistic effect</topic><topic>Underwater</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lei, Lingling</creatorcontrib><creatorcontrib>Chen, Baocheng</creatorcontrib><creatorcontrib>Wang, Shiyu</creatorcontrib><creatorcontrib>Cheng, Xu</creatorcontrib><creatorcontrib>Qiu, Jinghong</creatorcontrib><creatorcontrib>Wang, Haibo</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lei, Lingling</au><au>Chen, Baocheng</au><au>Wang, Shiyu</au><au>Cheng, Xu</au><au>Qiu, Jinghong</au><au>Wang, Haibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High strength and anti‐swelling hydrogel strain sensors based on amphiphilic polyurethane assemblies for human‐motion detection</atitle><jtitle>Polymer engineering and science</jtitle><date>2024-06</date><risdate>2024</risdate><volume>64</volume><issue>6</issue><spage>2675</spage><epage>2689</epage><pages>2675-2689</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><abstract>Hydrogel sensors are widely used in electronic skin, soft robotics, bioengineering, and medical therapy due to their excellent electrical conductivity, mechanical flexibility, and better biocompatibility. However, the swelling property of hydrogels has been hindering their application in underwater scenarios. Therefore, in this study, to address the anti‐swelling behavior of hydrogels, MXene nanosheets were modified by 1H,1H,2H,2H‐perfluorooctyltrimethoxysilane and then compounded with acrylamide and polyurethane to obtain multifunctional conductive hydrogels (PAM‐WPU/FMX hydrogels). Through the synergistic effect of chemical cross‐linking and hydrogen bonding on the gel network, the hydrogel sensor was characterized by strong resistance to swelling (swelling ratio = 2.22), excellent mechanical properties (strain at break after swelling equilibrium = 418.6%), and high strain sensitivity. For underwater applications, this study offers a model technique for the quick gelation of strong, swelling‐resistant hydrogels. Highlights Amphiphilic polyurethane micelles provided energy dissipation. Modified MXene was hydrophobic and electrically conductive. The strain of the hydrogel obtained after MXene modification was enhanced. The structural recovery capacity of both hydrogels was more than 60%. The modified hydrogel swollen but still had excellent sensing properties. Diagrammatic representation of (A) the preparation of the FMXene(FMX), and (B) the fabrication process of the PAM‐WPU/FMX hydrogels.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/pen.26718</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5321-8888</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0032-3888
ispartof Polymer engineering and science, 2024-06, Vol.64 (6), p.2675-2689
issn 0032-3888
1548-2634
language eng
recordid cdi_proquest_journals_3062892404
source Access via Wiley Online Library
subjects Acrylamide
Automation
Biocompatibility
Bioengineering
Bonding strength
Electrical resistivity
Energy dissipation
Human motion
hydrogel
Hydrogels
Hydrogen bonding
Manufacturing engineering
Mechanical properties
Micelles
Motion perception
MXene
MXenes
Polyurethane resins
Robotics
sensor
Sensors
Strain
Swelling ratio
swelling‐resistant
Synergistic effect
Underwater
title High strength and anti‐swelling hydrogel strain sensors based on amphiphilic polyurethane assemblies for human‐motion detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T12%3A19%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20strength%20and%20anti%E2%80%90swelling%20hydrogel%20strain%20sensors%20based%20on%20amphiphilic%20polyurethane%20assemblies%20for%20human%E2%80%90motion%20detection&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Lei,%20Lingling&rft.date=2024-06&rft.volume=64&rft.issue=6&rft.spage=2675&rft.epage=2689&rft.pages=2675-2689&rft.issn=0032-3888&rft.eissn=1548-2634&rft_id=info:doi/10.1002/pen.26718&rft_dat=%3Cproquest_cross%3E3062892404%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3062892404&rft_id=info:pmid/&rfr_iscdi=true