Superplastic deformation behavior of low Al–added medium Mn steels with and without Ti and Mo elements
Fe-Mn-Al-C medium Mn steels were found to reveal extraordinary superplasticity and have significant potential for forming the complex structural parts due to high strength, excellent ductility and material cost. In present study, the effect of tensile deformation temperature on the superplastic defo...
Gespeichert in:
Veröffentlicht in: | IOP conference series. Materials Science and Engineering 2024-05, Vol.1307 (1), p.12007 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12007 |
container_title | IOP conference series. Materials Science and Engineering |
container_volume | 1307 |
creator | Yuan, Pufan Zhang, Hongtao Chao, Qi Sun, Chenyu Jia, Bowen Tang, Shuai Yan, Haile Hodgson, Peter Cai, Minghui |
description | Fe-Mn-Al-C medium Mn steels were found to reveal extraordinary superplasticity and have significant potential for forming the complex structural parts due to high strength, excellent ductility and material cost. In present study, the effect of tensile deformation temperature on the superplastic deformation behavior of a cold-rolled low Al-added medium Mn steel was studied. A maximum tensile elongation of approximately 1170% was obtained at 745 °C and 10 −2 s −1 , which is to our best knowledge the highest low-temperature-high-strain-rate superplasticity in medium Mn steels. Also, the role mechanism of microalloying elements such as Ti and Mo was revealed to further enhance the strength level of superplastic medium Mn steels. In view of the representative microstructural features, such as equiaxed grains, random texture, and sluggish grain growth, grain boundary sliding is thought to be the dominative mechanism during the high-strain-rate superplastic deformation. |
doi_str_mv | 10.1088/1757-899X/1307/1/012007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3062892297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3062892297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-84c4d21b6a5fc664ab25e28cc6f357a2a498d7b2d5e42327b178ca207bbe5b843</originalsourceid><addsrcrecordid>eNqFkN9KwzAUh4soOKfPYMArL2aTNG3SyzHmH9jwYhO8C0mTso62qUnq8M538A19EttVJoLg1TmH853zgy8ILhG8QZCxENGYTliaPocogjREIUQYQnoUjA6b40PP0Glw5twWwoQSAkfBZtU22jalcL7IgNK5sZXwhamB1BvxWhgLTA5KswPT8vP9QyilFai0KtoKLGvgvNalA7vCb4Co1b4xrQfrYj8uDdClrnTt3XlwkovS6YvvOg6ebufr2f1k8Xj3MJsuJhlmzE8YyYjCSCYizrMkIULiWGOWZUkexVRgQVKmqMQq1gRHmEpEWSYwpFLqWDISjYOr4W9jzUurnedb09q6i-QRTDBLMU5pR9GByqxxzuqcN7aohH3jCPJeK--F8V4e77VyxAet3eX1cFmY5uf1cjX_zfFG5R0b_cH-l_AFF6mJNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3062892297</pqid></control><display><type>article</type><title>Superplastic deformation behavior of low Al–added medium Mn steels with and without Ti and Mo elements</title><source>Institute of Physics Open Access Journal Titles</source><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Yuan, Pufan ; Zhang, Hongtao ; Chao, Qi ; Sun, Chenyu ; Jia, Bowen ; Tang, Shuai ; Yan, Haile ; Hodgson, Peter ; Cai, Minghui</creator><creatorcontrib>Yuan, Pufan ; Zhang, Hongtao ; Chao, Qi ; Sun, Chenyu ; Jia, Bowen ; Tang, Shuai ; Yan, Haile ; Hodgson, Peter ; Cai, Minghui</creatorcontrib><description>Fe-Mn-Al-C medium Mn steels were found to reveal extraordinary superplasticity and have significant potential for forming the complex structural parts due to high strength, excellent ductility and material cost. In present study, the effect of tensile deformation temperature on the superplastic deformation behavior of a cold-rolled low Al-added medium Mn steel was studied. A maximum tensile elongation of approximately 1170% was obtained at 745 °C and 10 −2 s −1 , which is to our best knowledge the highest low-temperature-high-strain-rate superplasticity in medium Mn steels. Also, the role mechanism of microalloying elements such as Ti and Mo was revealed to further enhance the strength level of superplastic medium Mn steels. In view of the representative microstructural features, such as equiaxed grains, random texture, and sluggish grain growth, grain boundary sliding is thought to be the dominative mechanism during the high-strain-rate superplastic deformation.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/1307/1/012007</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Aluminum ; Deformation effects ; Grain boundary sliding ; Grain growth ; Iron ; Low temperature ; Manganese steels ; Molybdenum ; Strain rate ; Superplastic deformation ; Superplasticity ; Tensile deformation ; Titanium</subject><ispartof>IOP conference series. Materials Science and Engineering, 2024-05, Vol.1307 (1), p.12007</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c288t-84c4d21b6a5fc664ab25e28cc6f357a2a498d7b2d5e42327b178ca207bbe5b843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1757-899X/1307/1/012007/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Yuan, Pufan</creatorcontrib><creatorcontrib>Zhang, Hongtao</creatorcontrib><creatorcontrib>Chao, Qi</creatorcontrib><creatorcontrib>Sun, Chenyu</creatorcontrib><creatorcontrib>Jia, Bowen</creatorcontrib><creatorcontrib>Tang, Shuai</creatorcontrib><creatorcontrib>Yan, Haile</creatorcontrib><creatorcontrib>Hodgson, Peter</creatorcontrib><creatorcontrib>Cai, Minghui</creatorcontrib><title>Superplastic deformation behavior of low Al–added medium Mn steels with and without Ti and Mo elements</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>Fe-Mn-Al-C medium Mn steels were found to reveal extraordinary superplasticity and have significant potential for forming the complex structural parts due to high strength, excellent ductility and material cost. In present study, the effect of tensile deformation temperature on the superplastic deformation behavior of a cold-rolled low Al-added medium Mn steel was studied. A maximum tensile elongation of approximately 1170% was obtained at 745 °C and 10 −2 s −1 , which is to our best knowledge the highest low-temperature-high-strain-rate superplasticity in medium Mn steels. Also, the role mechanism of microalloying elements such as Ti and Mo was revealed to further enhance the strength level of superplastic medium Mn steels. In view of the representative microstructural features, such as equiaxed grains, random texture, and sluggish grain growth, grain boundary sliding is thought to be the dominative mechanism during the high-strain-rate superplastic deformation.</description><subject>Aluminum</subject><subject>Deformation effects</subject><subject>Grain boundary sliding</subject><subject>Grain growth</subject><subject>Iron</subject><subject>Low temperature</subject><subject>Manganese steels</subject><subject>Molybdenum</subject><subject>Strain rate</subject><subject>Superplastic deformation</subject><subject>Superplasticity</subject><subject>Tensile deformation</subject><subject>Titanium</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkN9KwzAUh4soOKfPYMArL2aTNG3SyzHmH9jwYhO8C0mTso62qUnq8M538A19EttVJoLg1TmH853zgy8ILhG8QZCxENGYTliaPocogjREIUQYQnoUjA6b40PP0Glw5twWwoQSAkfBZtU22jalcL7IgNK5sZXwhamB1BvxWhgLTA5KswPT8vP9QyilFai0KtoKLGvgvNalA7vCb4Co1b4xrQfrYj8uDdClrnTt3XlwkovS6YvvOg6ebufr2f1k8Xj3MJsuJhlmzE8YyYjCSCYizrMkIULiWGOWZUkexVRgQVKmqMQq1gRHmEpEWSYwpFLqWDISjYOr4W9jzUurnedb09q6i-QRTDBLMU5pR9GByqxxzuqcN7aohH3jCPJeK--F8V4e77VyxAet3eX1cFmY5uf1cjX_zfFG5R0b_cH-l_AFF6mJNw</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Yuan, Pufan</creator><creator>Zhang, Hongtao</creator><creator>Chao, Qi</creator><creator>Sun, Chenyu</creator><creator>Jia, Bowen</creator><creator>Tang, Shuai</creator><creator>Yan, Haile</creator><creator>Hodgson, Peter</creator><creator>Cai, Minghui</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240501</creationdate><title>Superplastic deformation behavior of low Al–added medium Mn steels with and without Ti and Mo elements</title><author>Yuan, Pufan ; Zhang, Hongtao ; Chao, Qi ; Sun, Chenyu ; Jia, Bowen ; Tang, Shuai ; Yan, Haile ; Hodgson, Peter ; Cai, Minghui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-84c4d21b6a5fc664ab25e28cc6f357a2a498d7b2d5e42327b178ca207bbe5b843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aluminum</topic><topic>Deformation effects</topic><topic>Grain boundary sliding</topic><topic>Grain growth</topic><topic>Iron</topic><topic>Low temperature</topic><topic>Manganese steels</topic><topic>Molybdenum</topic><topic>Strain rate</topic><topic>Superplastic deformation</topic><topic>Superplasticity</topic><topic>Tensile deformation</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Pufan</creatorcontrib><creatorcontrib>Zhang, Hongtao</creatorcontrib><creatorcontrib>Chao, Qi</creatorcontrib><creatorcontrib>Sun, Chenyu</creatorcontrib><creatorcontrib>Jia, Bowen</creatorcontrib><creatorcontrib>Tang, Shuai</creatorcontrib><creatorcontrib>Yan, Haile</creatorcontrib><creatorcontrib>Hodgson, Peter</creatorcontrib><creatorcontrib>Cai, Minghui</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Pufan</au><au>Zhang, Hongtao</au><au>Chao, Qi</au><au>Sun, Chenyu</au><au>Jia, Bowen</au><au>Tang, Shuai</au><au>Yan, Haile</au><au>Hodgson, Peter</au><au>Cai, Minghui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superplastic deformation behavior of low Al–added medium Mn steels with and without Ti and Mo elements</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>1307</volume><issue>1</issue><spage>12007</spage><pages>12007-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>Fe-Mn-Al-C medium Mn steels were found to reveal extraordinary superplasticity and have significant potential for forming the complex structural parts due to high strength, excellent ductility and material cost. In present study, the effect of tensile deformation temperature on the superplastic deformation behavior of a cold-rolled low Al-added medium Mn steel was studied. A maximum tensile elongation of approximately 1170% was obtained at 745 °C and 10 −2 s −1 , which is to our best knowledge the highest low-temperature-high-strain-rate superplasticity in medium Mn steels. Also, the role mechanism of microalloying elements such as Ti and Mo was revealed to further enhance the strength level of superplastic medium Mn steels. In view of the representative microstructural features, such as equiaxed grains, random texture, and sluggish grain growth, grain boundary sliding is thought to be the dominative mechanism during the high-strain-rate superplastic deformation.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/1307/1/012007</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1757-8981 |
ispartof | IOP conference series. Materials Science and Engineering, 2024-05, Vol.1307 (1), p.12007 |
issn | 1757-8981 1757-899X |
language | eng |
recordid | cdi_proquest_journals_3062892297 |
source | Institute of Physics Open Access Journal Titles; Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | Aluminum Deformation effects Grain boundary sliding Grain growth Iron Low temperature Manganese steels Molybdenum Strain rate Superplastic deformation Superplasticity Tensile deformation Titanium |
title | Superplastic deformation behavior of low Al–added medium Mn steels with and without Ti and Mo elements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T18%3A50%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superplastic%20deformation%20behavior%20of%20low%20Al%E2%80%93added%20medium%20Mn%20steels%20with%20and%20without%20Ti%20and%20Mo%20elements&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Yuan,%20Pufan&rft.date=2024-05-01&rft.volume=1307&rft.issue=1&rft.spage=12007&rft.pages=12007-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/1307/1/012007&rft_dat=%3Cproquest_cross%3E3062892297%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3062892297&rft_id=info:pmid/&rfr_iscdi=true |