Superplastic deformation behavior of low Al–added medium Mn steels with and without Ti and Mo elements

Fe-Mn-Al-C medium Mn steels were found to reveal extraordinary superplasticity and have significant potential for forming the complex structural parts due to high strength, excellent ductility and material cost. In present study, the effect of tensile deformation temperature on the superplastic defo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Materials Science and Engineering 2024-05, Vol.1307 (1), p.12007
Hauptverfasser: Yuan, Pufan, Zhang, Hongtao, Chao, Qi, Sun, Chenyu, Jia, Bowen, Tang, Shuai, Yan, Haile, Hodgson, Peter, Cai, Minghui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12007
container_title IOP conference series. Materials Science and Engineering
container_volume 1307
creator Yuan, Pufan
Zhang, Hongtao
Chao, Qi
Sun, Chenyu
Jia, Bowen
Tang, Shuai
Yan, Haile
Hodgson, Peter
Cai, Minghui
description Fe-Mn-Al-C medium Mn steels were found to reveal extraordinary superplasticity and have significant potential for forming the complex structural parts due to high strength, excellent ductility and material cost. In present study, the effect of tensile deformation temperature on the superplastic deformation behavior of a cold-rolled low Al-added medium Mn steel was studied. A maximum tensile elongation of approximately 1170% was obtained at 745 °C and 10 −2 s −1 , which is to our best knowledge the highest low-temperature-high-strain-rate superplasticity in medium Mn steels. Also, the role mechanism of microalloying elements such as Ti and Mo was revealed to further enhance the strength level of superplastic medium Mn steels. In view of the representative microstructural features, such as equiaxed grains, random texture, and sluggish grain growth, grain boundary sliding is thought to be the dominative mechanism during the high-strain-rate superplastic deformation.
doi_str_mv 10.1088/1757-899X/1307/1/012007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3062892297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3062892297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-84c4d21b6a5fc664ab25e28cc6f357a2a498d7b2d5e42327b178ca207bbe5b843</originalsourceid><addsrcrecordid>eNqFkN9KwzAUh4soOKfPYMArL2aTNG3SyzHmH9jwYhO8C0mTso62qUnq8M538A19EttVJoLg1TmH853zgy8ILhG8QZCxENGYTliaPocogjREIUQYQnoUjA6b40PP0Glw5twWwoQSAkfBZtU22jalcL7IgNK5sZXwhamB1BvxWhgLTA5KswPT8vP9QyilFai0KtoKLGvgvNalA7vCb4Co1b4xrQfrYj8uDdClrnTt3XlwkovS6YvvOg6ebufr2f1k8Xj3MJsuJhlmzE8YyYjCSCYizrMkIULiWGOWZUkexVRgQVKmqMQq1gRHmEpEWSYwpFLqWDISjYOr4W9jzUurnedb09q6i-QRTDBLMU5pR9GByqxxzuqcN7aohH3jCPJeK--F8V4e77VyxAet3eX1cFmY5uf1cjX_zfFG5R0b_cH-l_AFF6mJNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3062892297</pqid></control><display><type>article</type><title>Superplastic deformation behavior of low Al–added medium Mn steels with and without Ti and Mo elements</title><source>Institute of Physics Open Access Journal Titles</source><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Yuan, Pufan ; Zhang, Hongtao ; Chao, Qi ; Sun, Chenyu ; Jia, Bowen ; Tang, Shuai ; Yan, Haile ; Hodgson, Peter ; Cai, Minghui</creator><creatorcontrib>Yuan, Pufan ; Zhang, Hongtao ; Chao, Qi ; Sun, Chenyu ; Jia, Bowen ; Tang, Shuai ; Yan, Haile ; Hodgson, Peter ; Cai, Minghui</creatorcontrib><description>Fe-Mn-Al-C medium Mn steels were found to reveal extraordinary superplasticity and have significant potential for forming the complex structural parts due to high strength, excellent ductility and material cost. In present study, the effect of tensile deformation temperature on the superplastic deformation behavior of a cold-rolled low Al-added medium Mn steel was studied. A maximum tensile elongation of approximately 1170% was obtained at 745 °C and 10 −2 s −1 , which is to our best knowledge the highest low-temperature-high-strain-rate superplasticity in medium Mn steels. Also, the role mechanism of microalloying elements such as Ti and Mo was revealed to further enhance the strength level of superplastic medium Mn steels. In view of the representative microstructural features, such as equiaxed grains, random texture, and sluggish grain growth, grain boundary sliding is thought to be the dominative mechanism during the high-strain-rate superplastic deformation.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/1307/1/012007</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Aluminum ; Deformation effects ; Grain boundary sliding ; Grain growth ; Iron ; Low temperature ; Manganese steels ; Molybdenum ; Strain rate ; Superplastic deformation ; Superplasticity ; Tensile deformation ; Titanium</subject><ispartof>IOP conference series. Materials Science and Engineering, 2024-05, Vol.1307 (1), p.12007</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c288t-84c4d21b6a5fc664ab25e28cc6f357a2a498d7b2d5e42327b178ca207bbe5b843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1757-899X/1307/1/012007/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Yuan, Pufan</creatorcontrib><creatorcontrib>Zhang, Hongtao</creatorcontrib><creatorcontrib>Chao, Qi</creatorcontrib><creatorcontrib>Sun, Chenyu</creatorcontrib><creatorcontrib>Jia, Bowen</creatorcontrib><creatorcontrib>Tang, Shuai</creatorcontrib><creatorcontrib>Yan, Haile</creatorcontrib><creatorcontrib>Hodgson, Peter</creatorcontrib><creatorcontrib>Cai, Minghui</creatorcontrib><title>Superplastic deformation behavior of low Al–added medium Mn steels with and without Ti and Mo elements</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>Fe-Mn-Al-C medium Mn steels were found to reveal extraordinary superplasticity and have significant potential for forming the complex structural parts due to high strength, excellent ductility and material cost. In present study, the effect of tensile deformation temperature on the superplastic deformation behavior of a cold-rolled low Al-added medium Mn steel was studied. A maximum tensile elongation of approximately 1170% was obtained at 745 °C and 10 −2 s −1 , which is to our best knowledge the highest low-temperature-high-strain-rate superplasticity in medium Mn steels. Also, the role mechanism of microalloying elements such as Ti and Mo was revealed to further enhance the strength level of superplastic medium Mn steels. In view of the representative microstructural features, such as equiaxed grains, random texture, and sluggish grain growth, grain boundary sliding is thought to be the dominative mechanism during the high-strain-rate superplastic deformation.</description><subject>Aluminum</subject><subject>Deformation effects</subject><subject>Grain boundary sliding</subject><subject>Grain growth</subject><subject>Iron</subject><subject>Low temperature</subject><subject>Manganese steels</subject><subject>Molybdenum</subject><subject>Strain rate</subject><subject>Superplastic deformation</subject><subject>Superplasticity</subject><subject>Tensile deformation</subject><subject>Titanium</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkN9KwzAUh4soOKfPYMArL2aTNG3SyzHmH9jwYhO8C0mTso62qUnq8M538A19EttVJoLg1TmH853zgy8ILhG8QZCxENGYTliaPocogjREIUQYQnoUjA6b40PP0Glw5twWwoQSAkfBZtU22jalcL7IgNK5sZXwhamB1BvxWhgLTA5KswPT8vP9QyilFai0KtoKLGvgvNalA7vCb4Co1b4xrQfrYj8uDdClrnTt3XlwkovS6YvvOg6ebufr2f1k8Xj3MJsuJhlmzE8YyYjCSCYizrMkIULiWGOWZUkexVRgQVKmqMQq1gRHmEpEWSYwpFLqWDISjYOr4W9jzUurnedb09q6i-QRTDBLMU5pR9GByqxxzuqcN7aohH3jCPJeK--F8V4e77VyxAet3eX1cFmY5uf1cjX_zfFG5R0b_cH-l_AFF6mJNw</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Yuan, Pufan</creator><creator>Zhang, Hongtao</creator><creator>Chao, Qi</creator><creator>Sun, Chenyu</creator><creator>Jia, Bowen</creator><creator>Tang, Shuai</creator><creator>Yan, Haile</creator><creator>Hodgson, Peter</creator><creator>Cai, Minghui</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240501</creationdate><title>Superplastic deformation behavior of low Al–added medium Mn steels with and without Ti and Mo elements</title><author>Yuan, Pufan ; Zhang, Hongtao ; Chao, Qi ; Sun, Chenyu ; Jia, Bowen ; Tang, Shuai ; Yan, Haile ; Hodgson, Peter ; Cai, Minghui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-84c4d21b6a5fc664ab25e28cc6f357a2a498d7b2d5e42327b178ca207bbe5b843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aluminum</topic><topic>Deformation effects</topic><topic>Grain boundary sliding</topic><topic>Grain growth</topic><topic>Iron</topic><topic>Low temperature</topic><topic>Manganese steels</topic><topic>Molybdenum</topic><topic>Strain rate</topic><topic>Superplastic deformation</topic><topic>Superplasticity</topic><topic>Tensile deformation</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Pufan</creatorcontrib><creatorcontrib>Zhang, Hongtao</creatorcontrib><creatorcontrib>Chao, Qi</creatorcontrib><creatorcontrib>Sun, Chenyu</creatorcontrib><creatorcontrib>Jia, Bowen</creatorcontrib><creatorcontrib>Tang, Shuai</creatorcontrib><creatorcontrib>Yan, Haile</creatorcontrib><creatorcontrib>Hodgson, Peter</creatorcontrib><creatorcontrib>Cai, Minghui</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Pufan</au><au>Zhang, Hongtao</au><au>Chao, Qi</au><au>Sun, Chenyu</au><au>Jia, Bowen</au><au>Tang, Shuai</au><au>Yan, Haile</au><au>Hodgson, Peter</au><au>Cai, Minghui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superplastic deformation behavior of low Al–added medium Mn steels with and without Ti and Mo elements</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>1307</volume><issue>1</issue><spage>12007</spage><pages>12007-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>Fe-Mn-Al-C medium Mn steels were found to reveal extraordinary superplasticity and have significant potential for forming the complex structural parts due to high strength, excellent ductility and material cost. In present study, the effect of tensile deformation temperature on the superplastic deformation behavior of a cold-rolled low Al-added medium Mn steel was studied. A maximum tensile elongation of approximately 1170% was obtained at 745 °C and 10 −2 s −1 , which is to our best knowledge the highest low-temperature-high-strain-rate superplasticity in medium Mn steels. Also, the role mechanism of microalloying elements such as Ti and Mo was revealed to further enhance the strength level of superplastic medium Mn steels. In view of the representative microstructural features, such as equiaxed grains, random texture, and sluggish grain growth, grain boundary sliding is thought to be the dominative mechanism during the high-strain-rate superplastic deformation.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/1307/1/012007</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1757-8981
ispartof IOP conference series. Materials Science and Engineering, 2024-05, Vol.1307 (1), p.12007
issn 1757-8981
1757-899X
language eng
recordid cdi_proquest_journals_3062892297
source Institute of Physics Open Access Journal Titles; Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Aluminum
Deformation effects
Grain boundary sliding
Grain growth
Iron
Low temperature
Manganese steels
Molybdenum
Strain rate
Superplastic deformation
Superplasticity
Tensile deformation
Titanium
title Superplastic deformation behavior of low Al–added medium Mn steels with and without Ti and Mo elements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T18%3A50%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superplastic%20deformation%20behavior%20of%20low%20Al%E2%80%93added%20medium%20Mn%20steels%20with%20and%20without%20Ti%20and%20Mo%20elements&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Yuan,%20Pufan&rft.date=2024-05-01&rft.volume=1307&rft.issue=1&rft.spage=12007&rft.pages=12007-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/1307/1/012007&rft_dat=%3Cproquest_cross%3E3062892297%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3062892297&rft_id=info:pmid/&rfr_iscdi=true