An integral discretization scheme on a graded mesh for a fractional differential equation with integral boundary conditions

In this paper, a fractional differential equation with integral conditions is studied. The fractional differential equation is transformed into an integral equation with two initial values, where the initial values needs to ensure that the exact solution satisfies the integral boundary conditions. A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical chemistry 2024, Vol.62 (6), p.1384-1398
Hauptverfasser: Cen, Zhongdi, Huang, Jian, Xu, Aimin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1398
container_issue 6
container_start_page 1384
container_title Journal of mathematical chemistry
container_volume 62
creator Cen, Zhongdi
Huang, Jian
Xu, Aimin
description In this paper, a fractional differential equation with integral conditions is studied. The fractional differential equation is transformed into an integral equation with two initial values, where the initial values needs to ensure that the exact solution satisfies the integral boundary conditions. A graded mesh based on a priori information of the exact solution is constructed and the linear interpolation is used to approximate the functions in the fractional integral. The rigorous analysis about the convergence of the discretization scheme is derived by using the truncation error estimate techniques and the generalized Grönwall inequality. A quasi-Newton method is used to determine the initial values so that the numerical solution satisfies two integral boundary conditions within a prescribed precision. It is shown that the scheme is second-order convergent, which improves the results on the uniform mesh.
doi_str_mv 10.1007/s10910-024-01596-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3062886175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3062886175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-718bf3b4a202e8d16ebfa9ebd368f3cd2d7392e8663beab1ed79a555b792e733</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wNWA62genTyWpfiCgpvuQzK5aVPamTaZIuqfN-0I3bm6r_MdLgehe0oeKSHyKVOiKcGETTChtRZYXqARrSXDSml5iUaE1Rprqek1usl5TQjRSqgR-pm2VWx7WCa7qXzMTYI-fts-dm2VmxVsoSqdrcrdg6-2kFdV6FLZhGSbo-zEhQAJ2j6WAfaHAf-M_ers7bpD6236qpqu9fEoyLfoKthNhru_OkaLl-fF7A3PP17fZ9M5bpgkPZZUucDdxDLCQHkqwAWrwXkuVOCNZ15yXS5CcAfWUfBS27qunSxbyfkYPQy2u9TtD5B7s-4OqfydDSeCKSWorIuKDaomdTknCGaX4rY8bCgxx4zNkLEpGZtTxkYWiA9QLuJ2Cels_Q_1Cwplgi8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3062886175</pqid></control><display><type>article</type><title>An integral discretization scheme on a graded mesh for a fractional differential equation with integral boundary conditions</title><source>Springer Nature - Complete Springer Journals</source><creator>Cen, Zhongdi ; Huang, Jian ; Xu, Aimin</creator><creatorcontrib>Cen, Zhongdi ; Huang, Jian ; Xu, Aimin</creatorcontrib><description>In this paper, a fractional differential equation with integral conditions is studied. The fractional differential equation is transformed into an integral equation with two initial values, where the initial values needs to ensure that the exact solution satisfies the integral boundary conditions. A graded mesh based on a priori information of the exact solution is constructed and the linear interpolation is used to approximate the functions in the fractional integral. The rigorous analysis about the convergence of the discretization scheme is derived by using the truncation error estimate techniques and the generalized Grönwall inequality. A quasi-Newton method is used to determine the initial values so that the numerical solution satisfies two integral boundary conditions within a prescribed precision. It is shown that the scheme is second-order convergent, which improves the results on the uniform mesh.</description><identifier>ISSN: 0259-9791</identifier><identifier>EISSN: 1572-8897</identifier><identifier>DOI: 10.1007/s10910-024-01596-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Boundary conditions ; Chemistry ; Chemistry and Materials Science ; Differential equations ; Discretization ; Exact solutions ; Fractional calculus ; Integral equations ; Math. Applications in Chemistry ; Mathematical analysis ; Original Paper ; Physical Chemistry ; Quasi Newton methods ; Theoretical and Computational Chemistry ; Truncation errors</subject><ispartof>Journal of mathematical chemistry, 2024, Vol.62 (6), p.1384-1398</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-718bf3b4a202e8d16ebfa9ebd368f3cd2d7392e8663beab1ed79a555b792e733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10910-024-01596-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10910-024-01596-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Cen, Zhongdi</creatorcontrib><creatorcontrib>Huang, Jian</creatorcontrib><creatorcontrib>Xu, Aimin</creatorcontrib><title>An integral discretization scheme on a graded mesh for a fractional differential equation with integral boundary conditions</title><title>Journal of mathematical chemistry</title><addtitle>J Math Chem</addtitle><description>In this paper, a fractional differential equation with integral conditions is studied. The fractional differential equation is transformed into an integral equation with two initial values, where the initial values needs to ensure that the exact solution satisfies the integral boundary conditions. A graded mesh based on a priori information of the exact solution is constructed and the linear interpolation is used to approximate the functions in the fractional integral. The rigorous analysis about the convergence of the discretization scheme is derived by using the truncation error estimate techniques and the generalized Grönwall inequality. A quasi-Newton method is used to determine the initial values so that the numerical solution satisfies two integral boundary conditions within a prescribed precision. It is shown that the scheme is second-order convergent, which improves the results on the uniform mesh.</description><subject>Boundary conditions</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Differential equations</subject><subject>Discretization</subject><subject>Exact solutions</subject><subject>Fractional calculus</subject><subject>Integral equations</subject><subject>Math. Applications in Chemistry</subject><subject>Mathematical analysis</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><subject>Quasi Newton methods</subject><subject>Theoretical and Computational Chemistry</subject><subject>Truncation errors</subject><issn>0259-9791</issn><issn>1572-8897</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wNWA62genTyWpfiCgpvuQzK5aVPamTaZIuqfN-0I3bm6r_MdLgehe0oeKSHyKVOiKcGETTChtRZYXqARrSXDSml5iUaE1Rprqek1usl5TQjRSqgR-pm2VWx7WCa7qXzMTYI-fts-dm2VmxVsoSqdrcrdg6-2kFdV6FLZhGSbo-zEhQAJ2j6WAfaHAf-M_ers7bpD6236qpqu9fEoyLfoKthNhru_OkaLl-fF7A3PP17fZ9M5bpgkPZZUucDdxDLCQHkqwAWrwXkuVOCNZ15yXS5CcAfWUfBS27qunSxbyfkYPQy2u9TtD5B7s-4OqfydDSeCKSWorIuKDaomdTknCGaX4rY8bCgxx4zNkLEpGZtTxkYWiA9QLuJ2Cels_Q_1Cwplgi8</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Cen, Zhongdi</creator><creator>Huang, Jian</creator><creator>Xu, Aimin</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>An integral discretization scheme on a graded mesh for a fractional differential equation with integral boundary conditions</title><author>Cen, Zhongdi ; Huang, Jian ; Xu, Aimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-718bf3b4a202e8d16ebfa9ebd368f3cd2d7392e8663beab1ed79a555b792e733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boundary conditions</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Differential equations</topic><topic>Discretization</topic><topic>Exact solutions</topic><topic>Fractional calculus</topic><topic>Integral equations</topic><topic>Math. Applications in Chemistry</topic><topic>Mathematical analysis</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><topic>Quasi Newton methods</topic><topic>Theoretical and Computational Chemistry</topic><topic>Truncation errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cen, Zhongdi</creatorcontrib><creatorcontrib>Huang, Jian</creatorcontrib><creatorcontrib>Xu, Aimin</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cen, Zhongdi</au><au>Huang, Jian</au><au>Xu, Aimin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An integral discretization scheme on a graded mesh for a fractional differential equation with integral boundary conditions</atitle><jtitle>Journal of mathematical chemistry</jtitle><stitle>J Math Chem</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><issue>6</issue><spage>1384</spage><epage>1398</epage><pages>1384-1398</pages><issn>0259-9791</issn><eissn>1572-8897</eissn><abstract>In this paper, a fractional differential equation with integral conditions is studied. The fractional differential equation is transformed into an integral equation with two initial values, where the initial values needs to ensure that the exact solution satisfies the integral boundary conditions. A graded mesh based on a priori information of the exact solution is constructed and the linear interpolation is used to approximate the functions in the fractional integral. The rigorous analysis about the convergence of the discretization scheme is derived by using the truncation error estimate techniques and the generalized Grönwall inequality. A quasi-Newton method is used to determine the initial values so that the numerical solution satisfies two integral boundary conditions within a prescribed precision. It is shown that the scheme is second-order convergent, which improves the results on the uniform mesh.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10910-024-01596-7</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0259-9791
ispartof Journal of mathematical chemistry, 2024, Vol.62 (6), p.1384-1398
issn 0259-9791
1572-8897
language eng
recordid cdi_proquest_journals_3062886175
source Springer Nature - Complete Springer Journals
subjects Boundary conditions
Chemistry
Chemistry and Materials Science
Differential equations
Discretization
Exact solutions
Fractional calculus
Integral equations
Math. Applications in Chemistry
Mathematical analysis
Original Paper
Physical Chemistry
Quasi Newton methods
Theoretical and Computational Chemistry
Truncation errors
title An integral discretization scheme on a graded mesh for a fractional differential equation with integral boundary conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A00%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20integral%20discretization%20scheme%20on%20a%20graded%20mesh%20for%20a%20fractional%20differential%20equation%20with%20integral%20boundary%20conditions&rft.jtitle=Journal%20of%20mathematical%20chemistry&rft.au=Cen,%20Zhongdi&rft.date=2024&rft.volume=62&rft.issue=6&rft.spage=1384&rft.epage=1398&rft.pages=1384-1398&rft.issn=0259-9791&rft.eissn=1572-8897&rft_id=info:doi/10.1007/s10910-024-01596-7&rft_dat=%3Cproquest_cross%3E3062886175%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3062886175&rft_id=info:pmid/&rfr_iscdi=true