An integral discretization scheme on a graded mesh for a fractional differential equation with integral boundary conditions
In this paper, a fractional differential equation with integral conditions is studied. The fractional differential equation is transformed into an integral equation with two initial values, where the initial values needs to ensure that the exact solution satisfies the integral boundary conditions. A...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical chemistry 2024, Vol.62 (6), p.1384-1398 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1398 |
---|---|
container_issue | 6 |
container_start_page | 1384 |
container_title | Journal of mathematical chemistry |
container_volume | 62 |
creator | Cen, Zhongdi Huang, Jian Xu, Aimin |
description | In this paper, a fractional differential equation with integral conditions is studied. The fractional differential equation is transformed into an integral equation with two initial values, where the initial values needs to ensure that the exact solution satisfies the integral boundary conditions. A graded mesh based on a priori information of the exact solution is constructed and the linear interpolation is used to approximate the functions in the fractional integral. The rigorous analysis about the convergence of the discretization scheme is derived by using the truncation error estimate techniques and the generalized Grönwall inequality. A quasi-Newton method is used to determine the initial values so that the numerical solution satisfies two integral boundary conditions within a prescribed precision. It is shown that the scheme is second-order convergent, which improves the results on the uniform mesh. |
doi_str_mv | 10.1007/s10910-024-01596-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3062886175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3062886175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-718bf3b4a202e8d16ebfa9ebd368f3cd2d7392e8663beab1ed79a555b792e733</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wNWA62genTyWpfiCgpvuQzK5aVPamTaZIuqfN-0I3bm6r_MdLgehe0oeKSHyKVOiKcGETTChtRZYXqARrSXDSml5iUaE1Rprqek1usl5TQjRSqgR-pm2VWx7WCa7qXzMTYI-fts-dm2VmxVsoSqdrcrdg6-2kFdV6FLZhGSbo-zEhQAJ2j6WAfaHAf-M_ers7bpD6236qpqu9fEoyLfoKthNhru_OkaLl-fF7A3PP17fZ9M5bpgkPZZUucDdxDLCQHkqwAWrwXkuVOCNZ15yXS5CcAfWUfBS27qunSxbyfkYPQy2u9TtD5B7s-4OqfydDSeCKSWorIuKDaomdTknCGaX4rY8bCgxx4zNkLEpGZtTxkYWiA9QLuJ2Cels_Q_1Cwplgi8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3062886175</pqid></control><display><type>article</type><title>An integral discretization scheme on a graded mesh for a fractional differential equation with integral boundary conditions</title><source>Springer Nature - Complete Springer Journals</source><creator>Cen, Zhongdi ; Huang, Jian ; Xu, Aimin</creator><creatorcontrib>Cen, Zhongdi ; Huang, Jian ; Xu, Aimin</creatorcontrib><description>In this paper, a fractional differential equation with integral conditions is studied. The fractional differential equation is transformed into an integral equation with two initial values, where the initial values needs to ensure that the exact solution satisfies the integral boundary conditions. A graded mesh based on a priori information of the exact solution is constructed and the linear interpolation is used to approximate the functions in the fractional integral. The rigorous analysis about the convergence of the discretization scheme is derived by using the truncation error estimate techniques and the generalized Grönwall inequality. A quasi-Newton method is used to determine the initial values so that the numerical solution satisfies two integral boundary conditions within a prescribed precision. It is shown that the scheme is second-order convergent, which improves the results on the uniform mesh.</description><identifier>ISSN: 0259-9791</identifier><identifier>EISSN: 1572-8897</identifier><identifier>DOI: 10.1007/s10910-024-01596-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Boundary conditions ; Chemistry ; Chemistry and Materials Science ; Differential equations ; Discretization ; Exact solutions ; Fractional calculus ; Integral equations ; Math. Applications in Chemistry ; Mathematical analysis ; Original Paper ; Physical Chemistry ; Quasi Newton methods ; Theoretical and Computational Chemistry ; Truncation errors</subject><ispartof>Journal of mathematical chemistry, 2024, Vol.62 (6), p.1384-1398</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-718bf3b4a202e8d16ebfa9ebd368f3cd2d7392e8663beab1ed79a555b792e733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10910-024-01596-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10910-024-01596-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Cen, Zhongdi</creatorcontrib><creatorcontrib>Huang, Jian</creatorcontrib><creatorcontrib>Xu, Aimin</creatorcontrib><title>An integral discretization scheme on a graded mesh for a fractional differential equation with integral boundary conditions</title><title>Journal of mathematical chemistry</title><addtitle>J Math Chem</addtitle><description>In this paper, a fractional differential equation with integral conditions is studied. The fractional differential equation is transformed into an integral equation with two initial values, where the initial values needs to ensure that the exact solution satisfies the integral boundary conditions. A graded mesh based on a priori information of the exact solution is constructed and the linear interpolation is used to approximate the functions in the fractional integral. The rigorous analysis about the convergence of the discretization scheme is derived by using the truncation error estimate techniques and the generalized Grönwall inequality. A quasi-Newton method is used to determine the initial values so that the numerical solution satisfies two integral boundary conditions within a prescribed precision. It is shown that the scheme is second-order convergent, which improves the results on the uniform mesh.</description><subject>Boundary conditions</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Differential equations</subject><subject>Discretization</subject><subject>Exact solutions</subject><subject>Fractional calculus</subject><subject>Integral equations</subject><subject>Math. Applications in Chemistry</subject><subject>Mathematical analysis</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><subject>Quasi Newton methods</subject><subject>Theoretical and Computational Chemistry</subject><subject>Truncation errors</subject><issn>0259-9791</issn><issn>1572-8897</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wNWA62genTyWpfiCgpvuQzK5aVPamTaZIuqfN-0I3bm6r_MdLgehe0oeKSHyKVOiKcGETTChtRZYXqARrSXDSml5iUaE1Rprqek1usl5TQjRSqgR-pm2VWx7WCa7qXzMTYI-fts-dm2VmxVsoSqdrcrdg6-2kFdV6FLZhGSbo-zEhQAJ2j6WAfaHAf-M_ers7bpD6236qpqu9fEoyLfoKthNhru_OkaLl-fF7A3PP17fZ9M5bpgkPZZUucDdxDLCQHkqwAWrwXkuVOCNZ15yXS5CcAfWUfBS27qunSxbyfkYPQy2u9TtD5B7s-4OqfydDSeCKSWorIuKDaomdTknCGaX4rY8bCgxx4zNkLEpGZtTxkYWiA9QLuJ2Cels_Q_1Cwplgi8</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Cen, Zhongdi</creator><creator>Huang, Jian</creator><creator>Xu, Aimin</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>An integral discretization scheme on a graded mesh for a fractional differential equation with integral boundary conditions</title><author>Cen, Zhongdi ; Huang, Jian ; Xu, Aimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-718bf3b4a202e8d16ebfa9ebd368f3cd2d7392e8663beab1ed79a555b792e733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boundary conditions</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Differential equations</topic><topic>Discretization</topic><topic>Exact solutions</topic><topic>Fractional calculus</topic><topic>Integral equations</topic><topic>Math. Applications in Chemistry</topic><topic>Mathematical analysis</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><topic>Quasi Newton methods</topic><topic>Theoretical and Computational Chemistry</topic><topic>Truncation errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cen, Zhongdi</creatorcontrib><creatorcontrib>Huang, Jian</creatorcontrib><creatorcontrib>Xu, Aimin</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cen, Zhongdi</au><au>Huang, Jian</au><au>Xu, Aimin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An integral discretization scheme on a graded mesh for a fractional differential equation with integral boundary conditions</atitle><jtitle>Journal of mathematical chemistry</jtitle><stitle>J Math Chem</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><issue>6</issue><spage>1384</spage><epage>1398</epage><pages>1384-1398</pages><issn>0259-9791</issn><eissn>1572-8897</eissn><abstract>In this paper, a fractional differential equation with integral conditions is studied. The fractional differential equation is transformed into an integral equation with two initial values, where the initial values needs to ensure that the exact solution satisfies the integral boundary conditions. A graded mesh based on a priori information of the exact solution is constructed and the linear interpolation is used to approximate the functions in the fractional integral. The rigorous analysis about the convergence of the discretization scheme is derived by using the truncation error estimate techniques and the generalized Grönwall inequality. A quasi-Newton method is used to determine the initial values so that the numerical solution satisfies two integral boundary conditions within a prescribed precision. It is shown that the scheme is second-order convergent, which improves the results on the uniform mesh.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10910-024-01596-7</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0259-9791 |
ispartof | Journal of mathematical chemistry, 2024, Vol.62 (6), p.1384-1398 |
issn | 0259-9791 1572-8897 |
language | eng |
recordid | cdi_proquest_journals_3062886175 |
source | Springer Nature - Complete Springer Journals |
subjects | Boundary conditions Chemistry Chemistry and Materials Science Differential equations Discretization Exact solutions Fractional calculus Integral equations Math. Applications in Chemistry Mathematical analysis Original Paper Physical Chemistry Quasi Newton methods Theoretical and Computational Chemistry Truncation errors |
title | An integral discretization scheme on a graded mesh for a fractional differential equation with integral boundary conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A00%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20integral%20discretization%20scheme%20on%20a%20graded%20mesh%20for%20a%20fractional%20differential%20equation%20with%20integral%20boundary%20conditions&rft.jtitle=Journal%20of%20mathematical%20chemistry&rft.au=Cen,%20Zhongdi&rft.date=2024&rft.volume=62&rft.issue=6&rft.spage=1384&rft.epage=1398&rft.pages=1384-1398&rft.issn=0259-9791&rft.eissn=1572-8897&rft_id=info:doi/10.1007/s10910-024-01596-7&rft_dat=%3Cproquest_cross%3E3062886175%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3062886175&rft_id=info:pmid/&rfr_iscdi=true |