SD-Pose: facilitating space-decoupled human pose estimation via adaptive pose perception guidance

Human pose estimation is a popular and challenging task in computer vision. Currently, the mainstream methods for pose estimation are based on Gaussian heatmaps and coordinate regression techniques. However, the intensive computational overhead and quantization error introduced by heatmaps pose many...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia systems 2024-06, Vol.30 (3), Article 163
Hauptverfasser: Liu, Zhi, Hao, Shengzhao, Lu, Yunhua, Liu, Lei, Chen, Cong, Wang, Ruohuang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Multimedia systems
container_volume 30
creator Liu, Zhi
Hao, Shengzhao
Lu, Yunhua
Liu, Lei
Chen, Cong
Wang, Ruohuang
description Human pose estimation is a popular and challenging task in computer vision. Currently, the mainstream methods for pose estimation are based on Gaussian heatmaps and coordinate regression techniques. However, the intensive computational overhead and quantization error introduced by heatmaps pose many limitations on their application. And coordinate regression faces difficulties in learning mapping cross and misaligned keypoints, resulting in poor robustness. Recently, pose estimation based on Coordinate Classification encodes global spatial information into one-dimensional representations in X and Y directions, which turns keypoint localization into a classification problem and thus simplifies the model while effectively improving pose estimation accuracy. Motivated by this, SD-Pose is proposed in this work, which is a spatially decoupled human pose estimation model guided by adaptive pose perception. Specifically, the model first employs a Pyramid Adaptive Feature Extractor (PAFE) to obtain multi-scale featuremaps and generate adaptive keypoint weights to assist the model in extracting unique features for keypoints at different locations. Then, the Spatial Decoupling and Coordinated Analysis Module (SDCAM) simplifies the localization problem while considering both global and fine-grained features. Experimental results on MPII human pose and COCO keypoint detection datasets validate the effectiveness of the SD-Pose model and also display satisfied performance in recovering detailed information for keypoints such as Elbow, Hip, and Ankle.
doi_str_mv 10.1007/s00530-024-01368-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3062886043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3062886043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-c9c235b23237b0514e342eff0f1ecadd450ce5c4f2121aaa553a6802dea020e63</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwApwicTas106ackP8S0ggAWdr62xKqjYxdlKpb48hSNw47WG-md0dIU4VnCuA2UUEyDVIQCNB6aKUuz0xUUajVGWJ-2ICc4PSzAs8FEcxrgDUrNAwEfR6I1-6yJdZTa5ZNz31TbvMoifHsmLXDX7NVfYxbKjNfAIzjn2zSVTXZtuGMqrI982WR9FzcOx_xOXQVNQ6PhYHNa0jn_zOqXi_u327fpBPz_eP11dP0iFAL93coc4XqFHPFpArw9og1zXUih1VlcnBce5MjQoVEeW5pqIErJgAgQs9FWdjrg_d55CutKtuCG1aaTUUWJYFGJ0oHCkXuhgD19aH9E7YWQX2u0o7VmlTlfanSrtLJj2aYoLbJYe_6H9cX-B4eE8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3062886043</pqid></control><display><type>article</type><title>SD-Pose: facilitating space-decoupled human pose estimation via adaptive pose perception guidance</title><source>SpringerLink Journals</source><creator>Liu, Zhi ; Hao, Shengzhao ; Lu, Yunhua ; Liu, Lei ; Chen, Cong ; Wang, Ruohuang</creator><creatorcontrib>Liu, Zhi ; Hao, Shengzhao ; Lu, Yunhua ; Liu, Lei ; Chen, Cong ; Wang, Ruohuang</creatorcontrib><description>Human pose estimation is a popular and challenging task in computer vision. Currently, the mainstream methods for pose estimation are based on Gaussian heatmaps and coordinate regression techniques. However, the intensive computational overhead and quantization error introduced by heatmaps pose many limitations on their application. And coordinate regression faces difficulties in learning mapping cross and misaligned keypoints, resulting in poor robustness. Recently, pose estimation based on Coordinate Classification encodes global spatial information into one-dimensional representations in X and Y directions, which turns keypoint localization into a classification problem and thus simplifies the model while effectively improving pose estimation accuracy. Motivated by this, SD-Pose is proposed in this work, which is a spatially decoupled human pose estimation model guided by adaptive pose perception. Specifically, the model first employs a Pyramid Adaptive Feature Extractor (PAFE) to obtain multi-scale featuremaps and generate adaptive keypoint weights to assist the model in extracting unique features for keypoints at different locations. Then, the Spatial Decoupling and Coordinated Analysis Module (SDCAM) simplifies the localization problem while considering both global and fine-grained features. Experimental results on MPII human pose and COCO keypoint detection datasets validate the effectiveness of the SD-Pose model and also display satisfied performance in recovering detailed information for keypoints such as Elbow, Hip, and Ankle.</description><identifier>ISSN: 0942-4962</identifier><identifier>EISSN: 1432-1882</identifier><identifier>DOI: 10.1007/s00530-024-01368-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classification ; Computer Communication Networks ; Computer Graphics ; Computer Science ; Computer vision ; Cryptology ; Data Storage Representation ; Decoupling ; Feature extraction ; Localization ; Multimedia Information Systems ; Operating Systems ; Perception ; Pose estimation ; Regular Paper ; Spatial data</subject><ispartof>Multimedia systems, 2024-06, Vol.30 (3), Article 163</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-c9c235b23237b0514e342eff0f1ecadd450ce5c4f2121aaa553a6802dea020e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00530-024-01368-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00530-024-01368-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Liu, Zhi</creatorcontrib><creatorcontrib>Hao, Shengzhao</creatorcontrib><creatorcontrib>Lu, Yunhua</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Chen, Cong</creatorcontrib><creatorcontrib>Wang, Ruohuang</creatorcontrib><title>SD-Pose: facilitating space-decoupled human pose estimation via adaptive pose perception guidance</title><title>Multimedia systems</title><addtitle>Multimedia Systems</addtitle><description>Human pose estimation is a popular and challenging task in computer vision. Currently, the mainstream methods for pose estimation are based on Gaussian heatmaps and coordinate regression techniques. However, the intensive computational overhead and quantization error introduced by heatmaps pose many limitations on their application. And coordinate regression faces difficulties in learning mapping cross and misaligned keypoints, resulting in poor robustness. Recently, pose estimation based on Coordinate Classification encodes global spatial information into one-dimensional representations in X and Y directions, which turns keypoint localization into a classification problem and thus simplifies the model while effectively improving pose estimation accuracy. Motivated by this, SD-Pose is proposed in this work, which is a spatially decoupled human pose estimation model guided by adaptive pose perception. Specifically, the model first employs a Pyramid Adaptive Feature Extractor (PAFE) to obtain multi-scale featuremaps and generate adaptive keypoint weights to assist the model in extracting unique features for keypoints at different locations. Then, the Spatial Decoupling and Coordinated Analysis Module (SDCAM) simplifies the localization problem while considering both global and fine-grained features. Experimental results on MPII human pose and COCO keypoint detection datasets validate the effectiveness of the SD-Pose model and also display satisfied performance in recovering detailed information for keypoints such as Elbow, Hip, and Ankle.</description><subject>Classification</subject><subject>Computer Communication Networks</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Computer vision</subject><subject>Cryptology</subject><subject>Data Storage Representation</subject><subject>Decoupling</subject><subject>Feature extraction</subject><subject>Localization</subject><subject>Multimedia Information Systems</subject><subject>Operating Systems</subject><subject>Perception</subject><subject>Pose estimation</subject><subject>Regular Paper</subject><subject>Spatial data</subject><issn>0942-4962</issn><issn>1432-1882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwApwicTas106ackP8S0ggAWdr62xKqjYxdlKpb48hSNw47WG-md0dIU4VnCuA2UUEyDVIQCNB6aKUuz0xUUajVGWJ-2ICc4PSzAs8FEcxrgDUrNAwEfR6I1-6yJdZTa5ZNz31TbvMoifHsmLXDX7NVfYxbKjNfAIzjn2zSVTXZtuGMqrI982WR9FzcOx_xOXQVNQ6PhYHNa0jn_zOqXi_u327fpBPz_eP11dP0iFAL93coc4XqFHPFpArw9og1zXUih1VlcnBce5MjQoVEeW5pqIErJgAgQs9FWdjrg_d55CutKtuCG1aaTUUWJYFGJ0oHCkXuhgD19aH9E7YWQX2u0o7VmlTlfanSrtLJj2aYoLbJYe_6H9cX-B4eE8</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Liu, Zhi</creator><creator>Hao, Shengzhao</creator><creator>Lu, Yunhua</creator><creator>Liu, Lei</creator><creator>Chen, Cong</creator><creator>Wang, Ruohuang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240601</creationdate><title>SD-Pose: facilitating space-decoupled human pose estimation via adaptive pose perception guidance</title><author>Liu, Zhi ; Hao, Shengzhao ; Lu, Yunhua ; Liu, Lei ; Chen, Cong ; Wang, Ruohuang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-c9c235b23237b0514e342eff0f1ecadd450ce5c4f2121aaa553a6802dea020e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classification</topic><topic>Computer Communication Networks</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Computer vision</topic><topic>Cryptology</topic><topic>Data Storage Representation</topic><topic>Decoupling</topic><topic>Feature extraction</topic><topic>Localization</topic><topic>Multimedia Information Systems</topic><topic>Operating Systems</topic><topic>Perception</topic><topic>Pose estimation</topic><topic>Regular Paper</topic><topic>Spatial data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zhi</creatorcontrib><creatorcontrib>Hao, Shengzhao</creatorcontrib><creatorcontrib>Lu, Yunhua</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Chen, Cong</creatorcontrib><creatorcontrib>Wang, Ruohuang</creatorcontrib><collection>CrossRef</collection><jtitle>Multimedia systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zhi</au><au>Hao, Shengzhao</au><au>Lu, Yunhua</au><au>Liu, Lei</au><au>Chen, Cong</au><au>Wang, Ruohuang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SD-Pose: facilitating space-decoupled human pose estimation via adaptive pose perception guidance</atitle><jtitle>Multimedia systems</jtitle><stitle>Multimedia Systems</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>30</volume><issue>3</issue><artnum>163</artnum><issn>0942-4962</issn><eissn>1432-1882</eissn><abstract>Human pose estimation is a popular and challenging task in computer vision. Currently, the mainstream methods for pose estimation are based on Gaussian heatmaps and coordinate regression techniques. However, the intensive computational overhead and quantization error introduced by heatmaps pose many limitations on their application. And coordinate regression faces difficulties in learning mapping cross and misaligned keypoints, resulting in poor robustness. Recently, pose estimation based on Coordinate Classification encodes global spatial information into one-dimensional representations in X and Y directions, which turns keypoint localization into a classification problem and thus simplifies the model while effectively improving pose estimation accuracy. Motivated by this, SD-Pose is proposed in this work, which is a spatially decoupled human pose estimation model guided by adaptive pose perception. Specifically, the model first employs a Pyramid Adaptive Feature Extractor (PAFE) to obtain multi-scale featuremaps and generate adaptive keypoint weights to assist the model in extracting unique features for keypoints at different locations. Then, the Spatial Decoupling and Coordinated Analysis Module (SDCAM) simplifies the localization problem while considering both global and fine-grained features. Experimental results on MPII human pose and COCO keypoint detection datasets validate the effectiveness of the SD-Pose model and also display satisfied performance in recovering detailed information for keypoints such as Elbow, Hip, and Ankle.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00530-024-01368-y</doi></addata></record>
fulltext fulltext
identifier ISSN: 0942-4962
ispartof Multimedia systems, 2024-06, Vol.30 (3), Article 163
issn 0942-4962
1432-1882
language eng
recordid cdi_proquest_journals_3062886043
source SpringerLink Journals
subjects Classification
Computer Communication Networks
Computer Graphics
Computer Science
Computer vision
Cryptology
Data Storage Representation
Decoupling
Feature extraction
Localization
Multimedia Information Systems
Operating Systems
Perception
Pose estimation
Regular Paper
Spatial data
title SD-Pose: facilitating space-decoupled human pose estimation via adaptive pose perception guidance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A07%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SD-Pose:%20facilitating%20space-decoupled%20human%20pose%20estimation%20via%20adaptive%20pose%20perception%20guidance&rft.jtitle=Multimedia%20systems&rft.au=Liu,%20Zhi&rft.date=2024-06-01&rft.volume=30&rft.issue=3&rft.artnum=163&rft.issn=0942-4962&rft.eissn=1432-1882&rft_id=info:doi/10.1007/s00530-024-01368-y&rft_dat=%3Cproquest_cross%3E3062886043%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3062886043&rft_id=info:pmid/&rfr_iscdi=true