SD-Pose: facilitating space-decoupled human pose estimation via adaptive pose perception guidance
Human pose estimation is a popular and challenging task in computer vision. Currently, the mainstream methods for pose estimation are based on Gaussian heatmaps and coordinate regression techniques. However, the intensive computational overhead and quantization error introduced by heatmaps pose many...
Gespeichert in:
Veröffentlicht in: | Multimedia systems 2024-06, Vol.30 (3), Article 163 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Multimedia systems |
container_volume | 30 |
creator | Liu, Zhi Hao, Shengzhao Lu, Yunhua Liu, Lei Chen, Cong Wang, Ruohuang |
description | Human pose estimation is a popular and challenging task in computer vision. Currently, the mainstream methods for pose estimation are based on Gaussian heatmaps and coordinate regression techniques. However, the intensive computational overhead and quantization error introduced by heatmaps pose many limitations on their application. And coordinate regression faces difficulties in learning mapping cross and misaligned keypoints, resulting in poor robustness. Recently, pose estimation based on Coordinate Classification encodes global spatial information into one-dimensional representations in X and Y directions, which turns keypoint localization into a classification problem and thus simplifies the model while effectively improving pose estimation accuracy. Motivated by this, SD-Pose is proposed in this work, which is a spatially decoupled human pose estimation model guided by adaptive pose perception. Specifically, the model first employs a Pyramid Adaptive Feature Extractor (PAFE) to obtain multi-scale featuremaps and generate adaptive keypoint weights to assist the model in extracting unique features for keypoints at different locations. Then, the Spatial Decoupling and Coordinated Analysis Module (SDCAM) simplifies the localization problem while considering both global and fine-grained features. Experimental results on MPII human pose and COCO keypoint detection datasets validate the effectiveness of the SD-Pose model and also display satisfied performance in recovering detailed information for keypoints such as Elbow, Hip, and Ankle. |
doi_str_mv | 10.1007/s00530-024-01368-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3062886043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3062886043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-c9c235b23237b0514e342eff0f1ecadd450ce5c4f2121aaa553a6802dea020e63</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwApwicTas106ackP8S0ggAWdr62xKqjYxdlKpb48hSNw47WG-md0dIU4VnCuA2UUEyDVIQCNB6aKUuz0xUUajVGWJ-2ICc4PSzAs8FEcxrgDUrNAwEfR6I1-6yJdZTa5ZNz31TbvMoifHsmLXDX7NVfYxbKjNfAIzjn2zSVTXZtuGMqrI982WR9FzcOx_xOXQVNQ6PhYHNa0jn_zOqXi_u327fpBPz_eP11dP0iFAL93coc4XqFHPFpArw9og1zXUih1VlcnBce5MjQoVEeW5pqIErJgAgQs9FWdjrg_d55CutKtuCG1aaTUUWJYFGJ0oHCkXuhgD19aH9E7YWQX2u0o7VmlTlfanSrtLJj2aYoLbJYe_6H9cX-B4eE8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3062886043</pqid></control><display><type>article</type><title>SD-Pose: facilitating space-decoupled human pose estimation via adaptive pose perception guidance</title><source>SpringerLink Journals</source><creator>Liu, Zhi ; Hao, Shengzhao ; Lu, Yunhua ; Liu, Lei ; Chen, Cong ; Wang, Ruohuang</creator><creatorcontrib>Liu, Zhi ; Hao, Shengzhao ; Lu, Yunhua ; Liu, Lei ; Chen, Cong ; Wang, Ruohuang</creatorcontrib><description>Human pose estimation is a popular and challenging task in computer vision. Currently, the mainstream methods for pose estimation are based on Gaussian heatmaps and coordinate regression techniques. However, the intensive computational overhead and quantization error introduced by heatmaps pose many limitations on their application. And coordinate regression faces difficulties in learning mapping cross and misaligned keypoints, resulting in poor robustness. Recently, pose estimation based on Coordinate Classification encodes global spatial information into one-dimensional representations in X and Y directions, which turns keypoint localization into a classification problem and thus simplifies the model while effectively improving pose estimation accuracy. Motivated by this, SD-Pose is proposed in this work, which is a spatially decoupled human pose estimation model guided by adaptive pose perception. Specifically, the model first employs a Pyramid Adaptive Feature Extractor (PAFE) to obtain multi-scale featuremaps and generate adaptive keypoint weights to assist the model in extracting unique features for keypoints at different locations. Then, the Spatial Decoupling and Coordinated Analysis Module (SDCAM) simplifies the localization problem while considering both global and fine-grained features. Experimental results on MPII human pose and COCO keypoint detection datasets validate the effectiveness of the SD-Pose model and also display satisfied performance in recovering detailed information for keypoints such as Elbow, Hip, and Ankle.</description><identifier>ISSN: 0942-4962</identifier><identifier>EISSN: 1432-1882</identifier><identifier>DOI: 10.1007/s00530-024-01368-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classification ; Computer Communication Networks ; Computer Graphics ; Computer Science ; Computer vision ; Cryptology ; Data Storage Representation ; Decoupling ; Feature extraction ; Localization ; Multimedia Information Systems ; Operating Systems ; Perception ; Pose estimation ; Regular Paper ; Spatial data</subject><ispartof>Multimedia systems, 2024-06, Vol.30 (3), Article 163</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-c9c235b23237b0514e342eff0f1ecadd450ce5c4f2121aaa553a6802dea020e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00530-024-01368-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00530-024-01368-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Liu, Zhi</creatorcontrib><creatorcontrib>Hao, Shengzhao</creatorcontrib><creatorcontrib>Lu, Yunhua</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Chen, Cong</creatorcontrib><creatorcontrib>Wang, Ruohuang</creatorcontrib><title>SD-Pose: facilitating space-decoupled human pose estimation via adaptive pose perception guidance</title><title>Multimedia systems</title><addtitle>Multimedia Systems</addtitle><description>Human pose estimation is a popular and challenging task in computer vision. Currently, the mainstream methods for pose estimation are based on Gaussian heatmaps and coordinate regression techniques. However, the intensive computational overhead and quantization error introduced by heatmaps pose many limitations on their application. And coordinate regression faces difficulties in learning mapping cross and misaligned keypoints, resulting in poor robustness. Recently, pose estimation based on Coordinate Classification encodes global spatial information into one-dimensional representations in X and Y directions, which turns keypoint localization into a classification problem and thus simplifies the model while effectively improving pose estimation accuracy. Motivated by this, SD-Pose is proposed in this work, which is a spatially decoupled human pose estimation model guided by adaptive pose perception. Specifically, the model first employs a Pyramid Adaptive Feature Extractor (PAFE) to obtain multi-scale featuremaps and generate adaptive keypoint weights to assist the model in extracting unique features for keypoints at different locations. Then, the Spatial Decoupling and Coordinated Analysis Module (SDCAM) simplifies the localization problem while considering both global and fine-grained features. Experimental results on MPII human pose and COCO keypoint detection datasets validate the effectiveness of the SD-Pose model and also display satisfied performance in recovering detailed information for keypoints such as Elbow, Hip, and Ankle.</description><subject>Classification</subject><subject>Computer Communication Networks</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Computer vision</subject><subject>Cryptology</subject><subject>Data Storage Representation</subject><subject>Decoupling</subject><subject>Feature extraction</subject><subject>Localization</subject><subject>Multimedia Information Systems</subject><subject>Operating Systems</subject><subject>Perception</subject><subject>Pose estimation</subject><subject>Regular Paper</subject><subject>Spatial data</subject><issn>0942-4962</issn><issn>1432-1882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwApwicTas106ackP8S0ggAWdr62xKqjYxdlKpb48hSNw47WG-md0dIU4VnCuA2UUEyDVIQCNB6aKUuz0xUUajVGWJ-2ICc4PSzAs8FEcxrgDUrNAwEfR6I1-6yJdZTa5ZNz31TbvMoifHsmLXDX7NVfYxbKjNfAIzjn2zSVTXZtuGMqrI982WR9FzcOx_xOXQVNQ6PhYHNa0jn_zOqXi_u327fpBPz_eP11dP0iFAL93coc4XqFHPFpArw9og1zXUih1VlcnBce5MjQoVEeW5pqIErJgAgQs9FWdjrg_d55CutKtuCG1aaTUUWJYFGJ0oHCkXuhgD19aH9E7YWQX2u0o7VmlTlfanSrtLJj2aYoLbJYe_6H9cX-B4eE8</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Liu, Zhi</creator><creator>Hao, Shengzhao</creator><creator>Lu, Yunhua</creator><creator>Liu, Lei</creator><creator>Chen, Cong</creator><creator>Wang, Ruohuang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240601</creationdate><title>SD-Pose: facilitating space-decoupled human pose estimation via adaptive pose perception guidance</title><author>Liu, Zhi ; Hao, Shengzhao ; Lu, Yunhua ; Liu, Lei ; Chen, Cong ; Wang, Ruohuang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-c9c235b23237b0514e342eff0f1ecadd450ce5c4f2121aaa553a6802dea020e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classification</topic><topic>Computer Communication Networks</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Computer vision</topic><topic>Cryptology</topic><topic>Data Storage Representation</topic><topic>Decoupling</topic><topic>Feature extraction</topic><topic>Localization</topic><topic>Multimedia Information Systems</topic><topic>Operating Systems</topic><topic>Perception</topic><topic>Pose estimation</topic><topic>Regular Paper</topic><topic>Spatial data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zhi</creatorcontrib><creatorcontrib>Hao, Shengzhao</creatorcontrib><creatorcontrib>Lu, Yunhua</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Chen, Cong</creatorcontrib><creatorcontrib>Wang, Ruohuang</creatorcontrib><collection>CrossRef</collection><jtitle>Multimedia systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zhi</au><au>Hao, Shengzhao</au><au>Lu, Yunhua</au><au>Liu, Lei</au><au>Chen, Cong</au><au>Wang, Ruohuang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SD-Pose: facilitating space-decoupled human pose estimation via adaptive pose perception guidance</atitle><jtitle>Multimedia systems</jtitle><stitle>Multimedia Systems</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>30</volume><issue>3</issue><artnum>163</artnum><issn>0942-4962</issn><eissn>1432-1882</eissn><abstract>Human pose estimation is a popular and challenging task in computer vision. Currently, the mainstream methods for pose estimation are based on Gaussian heatmaps and coordinate regression techniques. However, the intensive computational overhead and quantization error introduced by heatmaps pose many limitations on their application. And coordinate regression faces difficulties in learning mapping cross and misaligned keypoints, resulting in poor robustness. Recently, pose estimation based on Coordinate Classification encodes global spatial information into one-dimensional representations in X and Y directions, which turns keypoint localization into a classification problem and thus simplifies the model while effectively improving pose estimation accuracy. Motivated by this, SD-Pose is proposed in this work, which is a spatially decoupled human pose estimation model guided by adaptive pose perception. Specifically, the model first employs a Pyramid Adaptive Feature Extractor (PAFE) to obtain multi-scale featuremaps and generate adaptive keypoint weights to assist the model in extracting unique features for keypoints at different locations. Then, the Spatial Decoupling and Coordinated Analysis Module (SDCAM) simplifies the localization problem while considering both global and fine-grained features. Experimental results on MPII human pose and COCO keypoint detection datasets validate the effectiveness of the SD-Pose model and also display satisfied performance in recovering detailed information for keypoints such as Elbow, Hip, and Ankle.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00530-024-01368-y</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0942-4962 |
ispartof | Multimedia systems, 2024-06, Vol.30 (3), Article 163 |
issn | 0942-4962 1432-1882 |
language | eng |
recordid | cdi_proquest_journals_3062886043 |
source | SpringerLink Journals |
subjects | Classification Computer Communication Networks Computer Graphics Computer Science Computer vision Cryptology Data Storage Representation Decoupling Feature extraction Localization Multimedia Information Systems Operating Systems Perception Pose estimation Regular Paper Spatial data |
title | SD-Pose: facilitating space-decoupled human pose estimation via adaptive pose perception guidance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A07%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SD-Pose:%20facilitating%20space-decoupled%20human%20pose%20estimation%20via%20adaptive%20pose%20perception%20guidance&rft.jtitle=Multimedia%20systems&rft.au=Liu,%20Zhi&rft.date=2024-06-01&rft.volume=30&rft.issue=3&rft.artnum=163&rft.issn=0942-4962&rft.eissn=1432-1882&rft_id=info:doi/10.1007/s00530-024-01368-y&rft_dat=%3Cproquest_cross%3E3062886043%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3062886043&rft_id=info:pmid/&rfr_iscdi=true |