Łojasiewicz–Simon inequalities for minimal networks: stability and convergence

We investigate stability properties of the motion by curvature of planar networks. We prove Łojasiewicz–Simon gradient inequalities for the length functional of planar networks with triple junctions. In particular, such an inequality holds for networks with junctions forming angles equal to 2 3 π th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2024-07, Vol.389 (3), p.2729-2782
Hauptverfasser: Pluda, Alessandra, Pozzetta, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2782
container_issue 3
container_start_page 2729
container_title Mathematische annalen
container_volume 389
creator Pluda, Alessandra
Pozzetta, Marco
description We investigate stability properties of the motion by curvature of planar networks. We prove Łojasiewicz–Simon gradient inequalities for the length functional of planar networks with triple junctions. In particular, such an inequality holds for networks with junctions forming angles equal to 2 3 π that are close in H 2 -norm to minimal networks, i.e., networks whose edges also have vanishing curvature. The latter inequality bounds a concave power of the difference between length of a minimal network Γ ∗ and length of a triple junctions network Γ from above by the L 2 -norm of the curvature of the edges of Γ . We apply this result to prove the stability of minimal networks in the sense that a motion by curvature starting from a network sufficiently close in H 2 -norm to a minimal one exists for all times and smoothly converges. We further rigorously construct an example of a motion by curvature having uniformly bounded curvature that smoothly converges to a degenerate network in infinite time.
doi_str_mv 10.1007/s00208-023-02714-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3062683248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3062683248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-244b974d3678afa1c3faab78b3b53cd12b1e6c8de80c1e7930f3b3750593c4ae3</originalsourceid><addsrcrecordid>eNp9kM9KAzEQh4MoWKsv4GnB8-okk92k3qT4Dwoi6jlks9mS2mbbZKvUkz6Dz-SL-CRGV_DmYZjDfL8Z5iPkkMIxBRAnEYCBzIFhKkF5LrbIgHJkOZUgtskgzYu8kEh3yV6MMwBAgGJAbj_e2pmOzj478_L5-n7nFq3PnLertZ67ztmYNW3IFs67hZ5n3nbPbXiMp1nsdOUSscm0rzPT-icbptYbu092Gj2P9uC3D8nDxfn9-Cqf3Fxej88muUHKu5xxXo0Er7EUUjeaGmy0roSssCrQ1JRV1JZG1laCoVaMEBqsUBRQjNBwbXFIjvq9y9Cu1jZ2ataug08nFULJSomMy0SxnjKhjTHYRi1D-iRsFAX1rU716lRSp37UKZFC2Idigv3Uhr_V_6S-ALKIc_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3062683248</pqid></control><display><type>article</type><title>Łojasiewicz–Simon inequalities for minimal networks: stability and convergence</title><source>SpringerLink Journals</source><creator>Pluda, Alessandra ; Pozzetta, Marco</creator><creatorcontrib>Pluda, Alessandra ; Pozzetta, Marco</creatorcontrib><description>We investigate stability properties of the motion by curvature of planar networks. We prove Łojasiewicz–Simon gradient inequalities for the length functional of planar networks with triple junctions. In particular, such an inequality holds for networks with junctions forming angles equal to 2 3 π that are close in H 2 -norm to minimal networks, i.e., networks whose edges also have vanishing curvature. The latter inequality bounds a concave power of the difference between length of a minimal network Γ ∗ and length of a triple junctions network Γ from above by the L 2 -norm of the curvature of the edges of Γ . We apply this result to prove the stability of minimal networks in the sense that a motion by curvature starting from a network sufficiently close in H 2 -norm to a minimal one exists for all times and smoothly converges. We further rigorously construct an example of a motion by curvature having uniformly bounded curvature that smoothly converges to a degenerate network in infinite time.</description><identifier>ISSN: 0025-5831</identifier><identifier>EISSN: 1432-1807</identifier><identifier>DOI: 10.1007/s00208-023-02714-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Curvature ; Inequalities ; Mathematics ; Mathematics and Statistics ; Networks ; Stability</subject><ispartof>Mathematische annalen, 2024-07, Vol.389 (3), p.2729-2782</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-244b974d3678afa1c3faab78b3b53cd12b1e6c8de80c1e7930f3b3750593c4ae3</cites><orcidid>0000-0003-4714-4119 ; 0000-0002-2757-0826</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00208-023-02714-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00208-023-02714-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Pluda, Alessandra</creatorcontrib><creatorcontrib>Pozzetta, Marco</creatorcontrib><title>Łojasiewicz–Simon inequalities for minimal networks: stability and convergence</title><title>Mathematische annalen</title><addtitle>Math. Ann</addtitle><description>We investigate stability properties of the motion by curvature of planar networks. We prove Łojasiewicz–Simon gradient inequalities for the length functional of planar networks with triple junctions. In particular, such an inequality holds for networks with junctions forming angles equal to 2 3 π that are close in H 2 -norm to minimal networks, i.e., networks whose edges also have vanishing curvature. The latter inequality bounds a concave power of the difference between length of a minimal network Γ ∗ and length of a triple junctions network Γ from above by the L 2 -norm of the curvature of the edges of Γ . We apply this result to prove the stability of minimal networks in the sense that a motion by curvature starting from a network sufficiently close in H 2 -norm to a minimal one exists for all times and smoothly converges. We further rigorously construct an example of a motion by curvature having uniformly bounded curvature that smoothly converges to a degenerate network in infinite time.</description><subject>Curvature</subject><subject>Inequalities</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Networks</subject><subject>Stability</subject><issn>0025-5831</issn><issn>1432-1807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kM9KAzEQh4MoWKsv4GnB8-okk92k3qT4Dwoi6jlks9mS2mbbZKvUkz6Dz-SL-CRGV_DmYZjDfL8Z5iPkkMIxBRAnEYCBzIFhKkF5LrbIgHJkOZUgtskgzYu8kEh3yV6MMwBAgGJAbj_e2pmOzj478_L5-n7nFq3PnLertZ67ztmYNW3IFs67hZ5n3nbPbXiMp1nsdOUSscm0rzPT-icbptYbu092Gj2P9uC3D8nDxfn9-Cqf3Fxej88muUHKu5xxXo0Er7EUUjeaGmy0roSssCrQ1JRV1JZG1laCoVaMEBqsUBRQjNBwbXFIjvq9y9Cu1jZ2ataug08nFULJSomMy0SxnjKhjTHYRi1D-iRsFAX1rU716lRSp37UKZFC2Idigv3Uhr_V_6S-ALKIc_A</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Pluda, Alessandra</creator><creator>Pozzetta, Marco</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4714-4119</orcidid><orcidid>https://orcid.org/0000-0002-2757-0826</orcidid></search><sort><creationdate>20240701</creationdate><title>Łojasiewicz–Simon inequalities for minimal networks: stability and convergence</title><author>Pluda, Alessandra ; Pozzetta, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-244b974d3678afa1c3faab78b3b53cd12b1e6c8de80c1e7930f3b3750593c4ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Curvature</topic><topic>Inequalities</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Networks</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pluda, Alessandra</creatorcontrib><creatorcontrib>Pozzetta, Marco</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Mathematische annalen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pluda, Alessandra</au><au>Pozzetta, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Łojasiewicz–Simon inequalities for minimal networks: stability and convergence</atitle><jtitle>Mathematische annalen</jtitle><stitle>Math. Ann</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>389</volume><issue>3</issue><spage>2729</spage><epage>2782</epage><pages>2729-2782</pages><issn>0025-5831</issn><eissn>1432-1807</eissn><abstract>We investigate stability properties of the motion by curvature of planar networks. We prove Łojasiewicz–Simon gradient inequalities for the length functional of planar networks with triple junctions. In particular, such an inequality holds for networks with junctions forming angles equal to 2 3 π that are close in H 2 -norm to minimal networks, i.e., networks whose edges also have vanishing curvature. The latter inequality bounds a concave power of the difference between length of a minimal network Γ ∗ and length of a triple junctions network Γ from above by the L 2 -norm of the curvature of the edges of Γ . We apply this result to prove the stability of minimal networks in the sense that a motion by curvature starting from a network sufficiently close in H 2 -norm to a minimal one exists for all times and smoothly converges. We further rigorously construct an example of a motion by curvature having uniformly bounded curvature that smoothly converges to a degenerate network in infinite time.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00208-023-02714-7</doi><tpages>54</tpages><orcidid>https://orcid.org/0000-0003-4714-4119</orcidid><orcidid>https://orcid.org/0000-0002-2757-0826</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5831
ispartof Mathematische annalen, 2024-07, Vol.389 (3), p.2729-2782
issn 0025-5831
1432-1807
language eng
recordid cdi_proquest_journals_3062683248
source SpringerLink Journals
subjects Curvature
Inequalities
Mathematics
Mathematics and Statistics
Networks
Stability
title Łojasiewicz–Simon inequalities for minimal networks: stability and convergence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T03%3A44%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%C5%81ojasiewicz%E2%80%93Simon%20inequalities%20for%20minimal%20networks:%20stability%20and%20convergence&rft.jtitle=Mathematische%20annalen&rft.au=Pluda,%20Alessandra&rft.date=2024-07-01&rft.volume=389&rft.issue=3&rft.spage=2729&rft.epage=2782&rft.pages=2729-2782&rft.issn=0025-5831&rft.eissn=1432-1807&rft_id=info:doi/10.1007/s00208-023-02714-7&rft_dat=%3Cproquest_cross%3E3062683248%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3062683248&rft_id=info:pmid/&rfr_iscdi=true