Łojasiewicz–Simon inequalities for minimal networks: stability and convergence
We investigate stability properties of the motion by curvature of planar networks. We prove Łojasiewicz–Simon gradient inequalities for the length functional of planar networks with triple junctions. In particular, such an inequality holds for networks with junctions forming angles equal to 2 3 π th...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2024-07, Vol.389 (3), p.2729-2782 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2782 |
---|---|
container_issue | 3 |
container_start_page | 2729 |
container_title | Mathematische annalen |
container_volume | 389 |
creator | Pluda, Alessandra Pozzetta, Marco |
description | We investigate stability properties of the motion by curvature of planar networks. We prove Łojasiewicz–Simon gradient inequalities for the length functional of planar networks with triple junctions. In particular, such an inequality holds for networks with junctions forming angles equal to
2
3
π
that are close in
H
2
-norm to minimal networks, i.e., networks whose edges also have vanishing curvature. The latter inequality bounds a concave power of the difference between length of a minimal network
Γ
∗
and length of a triple junctions network
Γ
from above by the
L
2
-norm of the curvature of the edges of
Γ
. We apply this result to prove the stability of minimal networks in the sense that a motion by curvature starting from a network sufficiently close in
H
2
-norm to a minimal one exists for all times and smoothly converges. We further rigorously construct an example of a motion by curvature having uniformly bounded curvature that smoothly converges to a degenerate network in infinite time. |
doi_str_mv | 10.1007/s00208-023-02714-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3062683248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3062683248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-244b974d3678afa1c3faab78b3b53cd12b1e6c8de80c1e7930f3b3750593c4ae3</originalsourceid><addsrcrecordid>eNp9kM9KAzEQh4MoWKsv4GnB8-okk92k3qT4Dwoi6jlks9mS2mbbZKvUkz6Dz-SL-CRGV_DmYZjDfL8Z5iPkkMIxBRAnEYCBzIFhKkF5LrbIgHJkOZUgtskgzYu8kEh3yV6MMwBAgGJAbj_e2pmOzj478_L5-n7nFq3PnLertZ67ztmYNW3IFs67hZ5n3nbPbXiMp1nsdOUSscm0rzPT-icbptYbu092Gj2P9uC3D8nDxfn9-Cqf3Fxej88muUHKu5xxXo0Er7EUUjeaGmy0roSssCrQ1JRV1JZG1laCoVaMEBqsUBRQjNBwbXFIjvq9y9Cu1jZ2ataug08nFULJSomMy0SxnjKhjTHYRi1D-iRsFAX1rU716lRSp37UKZFC2Idigv3Uhr_V_6S-ALKIc_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3062683248</pqid></control><display><type>article</type><title>Łojasiewicz–Simon inequalities for minimal networks: stability and convergence</title><source>SpringerLink Journals</source><creator>Pluda, Alessandra ; Pozzetta, Marco</creator><creatorcontrib>Pluda, Alessandra ; Pozzetta, Marco</creatorcontrib><description>We investigate stability properties of the motion by curvature of planar networks. We prove Łojasiewicz–Simon gradient inequalities for the length functional of planar networks with triple junctions. In particular, such an inequality holds for networks with junctions forming angles equal to
2
3
π
that are close in
H
2
-norm to minimal networks, i.e., networks whose edges also have vanishing curvature. The latter inequality bounds a concave power of the difference between length of a minimal network
Γ
∗
and length of a triple junctions network
Γ
from above by the
L
2
-norm of the curvature of the edges of
Γ
. We apply this result to prove the stability of minimal networks in the sense that a motion by curvature starting from a network sufficiently close in
H
2
-norm to a minimal one exists for all times and smoothly converges. We further rigorously construct an example of a motion by curvature having uniformly bounded curvature that smoothly converges to a degenerate network in infinite time.</description><identifier>ISSN: 0025-5831</identifier><identifier>EISSN: 1432-1807</identifier><identifier>DOI: 10.1007/s00208-023-02714-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Curvature ; Inequalities ; Mathematics ; Mathematics and Statistics ; Networks ; Stability</subject><ispartof>Mathematische annalen, 2024-07, Vol.389 (3), p.2729-2782</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-244b974d3678afa1c3faab78b3b53cd12b1e6c8de80c1e7930f3b3750593c4ae3</cites><orcidid>0000-0003-4714-4119 ; 0000-0002-2757-0826</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00208-023-02714-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00208-023-02714-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Pluda, Alessandra</creatorcontrib><creatorcontrib>Pozzetta, Marco</creatorcontrib><title>Łojasiewicz–Simon inequalities for minimal networks: stability and convergence</title><title>Mathematische annalen</title><addtitle>Math. Ann</addtitle><description>We investigate stability properties of the motion by curvature of planar networks. We prove Łojasiewicz–Simon gradient inequalities for the length functional of planar networks with triple junctions. In particular, such an inequality holds for networks with junctions forming angles equal to
2
3
π
that are close in
H
2
-norm to minimal networks, i.e., networks whose edges also have vanishing curvature. The latter inequality bounds a concave power of the difference between length of a minimal network
Γ
∗
and length of a triple junctions network
Γ
from above by the
L
2
-norm of the curvature of the edges of
Γ
. We apply this result to prove the stability of minimal networks in the sense that a motion by curvature starting from a network sufficiently close in
H
2
-norm to a minimal one exists for all times and smoothly converges. We further rigorously construct an example of a motion by curvature having uniformly bounded curvature that smoothly converges to a degenerate network in infinite time.</description><subject>Curvature</subject><subject>Inequalities</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Networks</subject><subject>Stability</subject><issn>0025-5831</issn><issn>1432-1807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kM9KAzEQh4MoWKsv4GnB8-okk92k3qT4Dwoi6jlks9mS2mbbZKvUkz6Dz-SL-CRGV_DmYZjDfL8Z5iPkkMIxBRAnEYCBzIFhKkF5LrbIgHJkOZUgtskgzYu8kEh3yV6MMwBAgGJAbj_e2pmOzj478_L5-n7nFq3PnLertZ67ztmYNW3IFs67hZ5n3nbPbXiMp1nsdOUSscm0rzPT-icbptYbu092Gj2P9uC3D8nDxfn9-Cqf3Fxej88muUHKu5xxXo0Er7EUUjeaGmy0roSssCrQ1JRV1JZG1laCoVaMEBqsUBRQjNBwbXFIjvq9y9Cu1jZ2ataug08nFULJSomMy0SxnjKhjTHYRi1D-iRsFAX1rU716lRSp37UKZFC2Idigv3Uhr_V_6S-ALKIc_A</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Pluda, Alessandra</creator><creator>Pozzetta, Marco</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4714-4119</orcidid><orcidid>https://orcid.org/0000-0002-2757-0826</orcidid></search><sort><creationdate>20240701</creationdate><title>Łojasiewicz–Simon inequalities for minimal networks: stability and convergence</title><author>Pluda, Alessandra ; Pozzetta, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-244b974d3678afa1c3faab78b3b53cd12b1e6c8de80c1e7930f3b3750593c4ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Curvature</topic><topic>Inequalities</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Networks</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pluda, Alessandra</creatorcontrib><creatorcontrib>Pozzetta, Marco</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Mathematische annalen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pluda, Alessandra</au><au>Pozzetta, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Łojasiewicz–Simon inequalities for minimal networks: stability and convergence</atitle><jtitle>Mathematische annalen</jtitle><stitle>Math. Ann</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>389</volume><issue>3</issue><spage>2729</spage><epage>2782</epage><pages>2729-2782</pages><issn>0025-5831</issn><eissn>1432-1807</eissn><abstract>We investigate stability properties of the motion by curvature of planar networks. We prove Łojasiewicz–Simon gradient inequalities for the length functional of planar networks with triple junctions. In particular, such an inequality holds for networks with junctions forming angles equal to
2
3
π
that are close in
H
2
-norm to minimal networks, i.e., networks whose edges also have vanishing curvature. The latter inequality bounds a concave power of the difference between length of a minimal network
Γ
∗
and length of a triple junctions network
Γ
from above by the
L
2
-norm of the curvature of the edges of
Γ
. We apply this result to prove the stability of minimal networks in the sense that a motion by curvature starting from a network sufficiently close in
H
2
-norm to a minimal one exists for all times and smoothly converges. We further rigorously construct an example of a motion by curvature having uniformly bounded curvature that smoothly converges to a degenerate network in infinite time.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00208-023-02714-7</doi><tpages>54</tpages><orcidid>https://orcid.org/0000-0003-4714-4119</orcidid><orcidid>https://orcid.org/0000-0002-2757-0826</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5831 |
ispartof | Mathematische annalen, 2024-07, Vol.389 (3), p.2729-2782 |
issn | 0025-5831 1432-1807 |
language | eng |
recordid | cdi_proquest_journals_3062683248 |
source | SpringerLink Journals |
subjects | Curvature Inequalities Mathematics Mathematics and Statistics Networks Stability |
title | Łojasiewicz–Simon inequalities for minimal networks: stability and convergence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T03%3A44%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%C5%81ojasiewicz%E2%80%93Simon%20inequalities%20for%20minimal%20networks:%20stability%20and%20convergence&rft.jtitle=Mathematische%20annalen&rft.au=Pluda,%20Alessandra&rft.date=2024-07-01&rft.volume=389&rft.issue=3&rft.spage=2729&rft.epage=2782&rft.pages=2729-2782&rft.issn=0025-5831&rft.eissn=1432-1807&rft_id=info:doi/10.1007/s00208-023-02714-7&rft_dat=%3Cproquest_cross%3E3062683248%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3062683248&rft_id=info:pmid/&rfr_iscdi=true |