Preparing N defect modified g-C3N4 for enhanced photocatalytic degradation of methylene blue by constructing a urea–ammonium acetate system

Graphitic carbon nitride (g-C 3 N 4) faces limitations in its photocatalytic applications due to its inherently wide bandgap (2.7 eV), low utilization of visible light, and a high rate of recombination of photogenerated electron–hole pairs. Defect engineering can effectively enhance the ability of g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Research on chemical intermediates 2024, Vol.50 (6), p.2455-2476
Hauptverfasser: Yan, Jia, Hu, Cheng, Zhang, Lianhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2476
container_issue 6
container_start_page 2455
container_title Research on chemical intermediates
container_volume 50
creator Yan, Jia
Hu, Cheng
Zhang, Lianhong
description Graphitic carbon nitride (g-C 3 N 4) faces limitations in its photocatalytic applications due to its inherently wide bandgap (2.7 eV), low utilization of visible light, and a high rate of recombination of photogenerated electron–hole pairs. Defect engineering can effectively enhance the ability of g-C 3 N 4 photocatalysts to address environmental pollution. In this paper, g-C 3 N 4 materials with N defects (AA-CN15) were successfully prepared by using urea as a hydrogen bond donor and ammonium acetate as a hydrogen bond acceptor. The catalyst exhibits a broader range of visible light absorption, a lower rate of photogenerated electron–hole recombination, and a larger specific surface area, thanks to the formation of N defects in the N1 (C=N–C) vacancy. The formation of N defects reduces the band gap width of AA-CN15 from 2.85 eV to 1.90 eV compared to U-CN. The degradation rate of AA-CN15 in a 30 mg/L MB solution under visible light irradiation can reach 91.4% within 100 min, which is 7.2 times higher than that of U-CN. This study addresses the limitations and drawbacks of traditional defect introduction methods, offering a novel approach for the synthesis of N defect g-C 3 N 4 materials.
doi_str_mv 10.1007/s11164-024-05282-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3062682539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3062682539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-2aa72b1baa32dad49532570eb5a0443d7806eee2bc0737a7b63a7b018e2848da3</originalsourceid><addsrcrecordid>eNp9kM1q3DAUhUVoINOkL9CVoGs3-rF-ZlmGtAmEJIt2La7l6xmHseVIMsG7vkBWecM-STWZQndZ3HPhcs658BHymbOvnDFzmTjnuq6YKKOEFdXzCVlxpW2ltFEfyIqthag01_aMfEzpkTGurGUr8vIQcYLYj1t6R1vs0Gc6hLbvemzpttrIu5p2IVIcdzD6cpt2IQcPGfZL7n2JbCO0kPsw0tDRAfNu2eOItNnPRRbqw5hynH0-vAA6R4Q_v19hGMLYzwMFjxky0rSkjMMFOe1gn_DTv31Ofn2_-rm5rm7vf9xsvt1WXhiWKwFgRMMbAClaaOu1kkIZho0CVteyNZZpRBSNZ0YaMI2WRRi3KGxtW5Dn5Muxd4rhacaU3WOY41heOsm00FYouS4ucXT5GFKK2Lkp9gPExXHmDtjdEbsr2N0bdvdcQvIYStOBKsb_1e-k_gJONolg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3062682539</pqid></control><display><type>article</type><title>Preparing N defect modified g-C3N4 for enhanced photocatalytic degradation of methylene blue by constructing a urea–ammonium acetate system</title><source>SpringerNature Journals</source><creator>Yan, Jia ; Hu, Cheng ; Zhang, Lianhong</creator><creatorcontrib>Yan, Jia ; Hu, Cheng ; Zhang, Lianhong</creatorcontrib><description>Graphitic carbon nitride (g-C 3 N 4) faces limitations in its photocatalytic applications due to its inherently wide bandgap (2.7 eV), low utilization of visible light, and a high rate of recombination of photogenerated electron–hole pairs. Defect engineering can effectively enhance the ability of g-C 3 N 4 photocatalysts to address environmental pollution. In this paper, g-C 3 N 4 materials with N defects (AA-CN15) were successfully prepared by using urea as a hydrogen bond donor and ammonium acetate as a hydrogen bond acceptor. The catalyst exhibits a broader range of visible light absorption, a lower rate of photogenerated electron–hole recombination, and a larger specific surface area, thanks to the formation of N defects in the N1 (C=N–C) vacancy. The formation of N defects reduces the band gap width of AA-CN15 from 2.85 eV to 1.90 eV compared to U-CN. The degradation rate of AA-CN15 in a 30 mg/L MB solution under visible light irradiation can reach 91.4% within 100 min, which is 7.2 times higher than that of U-CN. This study addresses the limitations and drawbacks of traditional defect introduction methods, offering a novel approach for the synthesis of N defect g-C 3 N 4 materials.</description><identifier>ISSN: 0922-6168</identifier><identifier>EISSN: 1568-5675</identifier><identifier>DOI: 10.1007/s11164-024-05282-w</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Ammonium acetate ; Carbon nitride ; Catalysis ; Chemistry ; Chemistry and Materials Science ; Defects ; Electromagnetic absorption ; Energy gap ; Hydrogen bonds ; Inorganic Chemistry ; Light irradiation ; Methylene blue ; Photocatalysis ; Photodegradation ; Physical Chemistry ; Ureas</subject><ispartof>Research on chemical intermediates, 2024, Vol.50 (6), p.2455-2476</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-2aa72b1baa32dad49532570eb5a0443d7806eee2bc0737a7b63a7b018e2848da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11164-024-05282-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11164-024-05282-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Yan, Jia</creatorcontrib><creatorcontrib>Hu, Cheng</creatorcontrib><creatorcontrib>Zhang, Lianhong</creatorcontrib><title>Preparing N defect modified g-C3N4 for enhanced photocatalytic degradation of methylene blue by constructing a urea–ammonium acetate system</title><title>Research on chemical intermediates</title><addtitle>Res Chem Intermed</addtitle><description>Graphitic carbon nitride (g-C 3 N 4) faces limitations in its photocatalytic applications due to its inherently wide bandgap (2.7 eV), low utilization of visible light, and a high rate of recombination of photogenerated electron–hole pairs. Defect engineering can effectively enhance the ability of g-C 3 N 4 photocatalysts to address environmental pollution. In this paper, g-C 3 N 4 materials with N defects (AA-CN15) were successfully prepared by using urea as a hydrogen bond donor and ammonium acetate as a hydrogen bond acceptor. The catalyst exhibits a broader range of visible light absorption, a lower rate of photogenerated electron–hole recombination, and a larger specific surface area, thanks to the formation of N defects in the N1 (C=N–C) vacancy. The formation of N defects reduces the band gap width of AA-CN15 from 2.85 eV to 1.90 eV compared to U-CN. The degradation rate of AA-CN15 in a 30 mg/L MB solution under visible light irradiation can reach 91.4% within 100 min, which is 7.2 times higher than that of U-CN. This study addresses the limitations and drawbacks of traditional defect introduction methods, offering a novel approach for the synthesis of N defect g-C 3 N 4 materials.</description><subject>Ammonium acetate</subject><subject>Carbon nitride</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Defects</subject><subject>Electromagnetic absorption</subject><subject>Energy gap</subject><subject>Hydrogen bonds</subject><subject>Inorganic Chemistry</subject><subject>Light irradiation</subject><subject>Methylene blue</subject><subject>Photocatalysis</subject><subject>Photodegradation</subject><subject>Physical Chemistry</subject><subject>Ureas</subject><issn>0922-6168</issn><issn>1568-5675</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1q3DAUhUVoINOkL9CVoGs3-rF-ZlmGtAmEJIt2La7l6xmHseVIMsG7vkBWecM-STWZQndZ3HPhcs658BHymbOvnDFzmTjnuq6YKKOEFdXzCVlxpW2ltFEfyIqthag01_aMfEzpkTGurGUr8vIQcYLYj1t6R1vs0Gc6hLbvemzpttrIu5p2IVIcdzD6cpt2IQcPGfZL7n2JbCO0kPsw0tDRAfNu2eOItNnPRRbqw5hynH0-vAA6R4Q_v19hGMLYzwMFjxky0rSkjMMFOe1gn_DTv31Ofn2_-rm5rm7vf9xsvt1WXhiWKwFgRMMbAClaaOu1kkIZho0CVteyNZZpRBSNZ0YaMI2WRRi3KGxtW5Dn5Muxd4rhacaU3WOY41heOsm00FYouS4ucXT5GFKK2Lkp9gPExXHmDtjdEbsr2N0bdvdcQvIYStOBKsb_1e-k_gJONolg</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Yan, Jia</creator><creator>Hu, Cheng</creator><creator>Zhang, Lianhong</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Preparing N defect modified g-C3N4 for enhanced photocatalytic degradation of methylene blue by constructing a urea–ammonium acetate system</title><author>Yan, Jia ; Hu, Cheng ; Zhang, Lianhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-2aa72b1baa32dad49532570eb5a0443d7806eee2bc0737a7b63a7b018e2848da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ammonium acetate</topic><topic>Carbon nitride</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Defects</topic><topic>Electromagnetic absorption</topic><topic>Energy gap</topic><topic>Hydrogen bonds</topic><topic>Inorganic Chemistry</topic><topic>Light irradiation</topic><topic>Methylene blue</topic><topic>Photocatalysis</topic><topic>Photodegradation</topic><topic>Physical Chemistry</topic><topic>Ureas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Jia</creatorcontrib><creatorcontrib>Hu, Cheng</creatorcontrib><creatorcontrib>Zhang, Lianhong</creatorcontrib><collection>CrossRef</collection><jtitle>Research on chemical intermediates</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Jia</au><au>Hu, Cheng</au><au>Zhang, Lianhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparing N defect modified g-C3N4 for enhanced photocatalytic degradation of methylene blue by constructing a urea–ammonium acetate system</atitle><jtitle>Research on chemical intermediates</jtitle><stitle>Res Chem Intermed</stitle><date>2024</date><risdate>2024</risdate><volume>50</volume><issue>6</issue><spage>2455</spage><epage>2476</epage><pages>2455-2476</pages><issn>0922-6168</issn><eissn>1568-5675</eissn><abstract>Graphitic carbon nitride (g-C 3 N 4) faces limitations in its photocatalytic applications due to its inherently wide bandgap (2.7 eV), low utilization of visible light, and a high rate of recombination of photogenerated electron–hole pairs. Defect engineering can effectively enhance the ability of g-C 3 N 4 photocatalysts to address environmental pollution. In this paper, g-C 3 N 4 materials with N defects (AA-CN15) were successfully prepared by using urea as a hydrogen bond donor and ammonium acetate as a hydrogen bond acceptor. The catalyst exhibits a broader range of visible light absorption, a lower rate of photogenerated electron–hole recombination, and a larger specific surface area, thanks to the formation of N defects in the N1 (C=N–C) vacancy. The formation of N defects reduces the band gap width of AA-CN15 from 2.85 eV to 1.90 eV compared to U-CN. The degradation rate of AA-CN15 in a 30 mg/L MB solution under visible light irradiation can reach 91.4% within 100 min, which is 7.2 times higher than that of U-CN. This study addresses the limitations and drawbacks of traditional defect introduction methods, offering a novel approach for the synthesis of N defect g-C 3 N 4 materials.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11164-024-05282-w</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0922-6168
ispartof Research on chemical intermediates, 2024, Vol.50 (6), p.2455-2476
issn 0922-6168
1568-5675
language eng
recordid cdi_proquest_journals_3062682539
source SpringerNature Journals
subjects Ammonium acetate
Carbon nitride
Catalysis
Chemistry
Chemistry and Materials Science
Defects
Electromagnetic absorption
Energy gap
Hydrogen bonds
Inorganic Chemistry
Light irradiation
Methylene blue
Photocatalysis
Photodegradation
Physical Chemistry
Ureas
title Preparing N defect modified g-C3N4 for enhanced photocatalytic degradation of methylene blue by constructing a urea–ammonium acetate system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A21%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparing%20N%20defect%20modified%20g-C3N4%20for%20enhanced%20photocatalytic%20degradation%20of%20methylene%20blue%20by%20constructing%20a%20urea%E2%80%93ammonium%20acetate%20system&rft.jtitle=Research%20on%20chemical%20intermediates&rft.au=Yan,%20Jia&rft.date=2024&rft.volume=50&rft.issue=6&rft.spage=2455&rft.epage=2476&rft.pages=2455-2476&rft.issn=0922-6168&rft.eissn=1568-5675&rft_id=info:doi/10.1007/s11164-024-05282-w&rft_dat=%3Cproquest_cross%3E3062682539%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3062682539&rft_id=info:pmid/&rfr_iscdi=true