Oxidative stress status and antioxidative responses in neonate versus adult Daphnia magna exposed to polystyrene leachate
Objective Plastic pollution, particularly polystyrene, significantly threatens aquatic ecosystems worldwide. Furthermore, plastic leachates have been documented to be detrimental to some aquatic organisms; however, understanding the toxicity mechanism remains limited. This study aimed to investigate...
Gespeichert in:
Veröffentlicht in: | Toxicology and environmental health sciences 2024, Vol.16 (2), p.171-179 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 179 |
---|---|
container_issue | 2 |
container_start_page | 171 |
container_title | Toxicology and environmental health sciences |
container_volume | 16 |
creator | Esterhuizen, Maranda Monticelli, Michela Lee, Sang-Ah Kim, Youngsam Pflugmacher, Stephan Kim, Young Jun |
description | Objective
Plastic pollution, particularly polystyrene, significantly threatens aquatic ecosystems worldwide. Furthermore, plastic leachates have been documented to be detrimental to some aquatic organisms; however, understanding the toxicity mechanism remains limited. This study aimed to investigate the ecotoxicological effects of polystyrene leachate on neonate and adult
Daphnia magna
, a keystone species in freshwater ecosystems.
Methods
The effects of the leachate were studied by employing the novel technique of separating daphnids from the polystyrene microplastic fragments via dialysis tubing, which was prepared 24 and 72 h before organism exposure. Acute toxicity was assessed as effects on organism mobility, oxidative stress (reactive oxygen species), antioxidative enzyme responses (superoxide dismutase and catalase), as well as the effects on the biotransformation enzyme glutathione S-transferase’s activity.
Results
Under the experimental conditions, the mobility and oxidative status of the daphnids were unaffected, irrespective of the organisms’ age or leaching time. In adults exposed for 24 h, the antioxidant defense enzyme activities were elevated, contributing to cellular homeostasis maintenance. However, the catalase activity was reduced for neonates and adults exposed to the prolonged pre-leached treatment, thus making them less capable of retaining homeostasis when exposed to toxicant mixtures.
Conclusion
This study highlights the vulnerability of
D. magna
to polystyrene leachate and underscores the need for continued research on the ecotoxicological effects of plastic pollution in aquatic ecosystems. Findings from this investigation contribute to understanding the ecological consequences of plastic pollution, which can inform mitigation strategies and policy decisions to preserve the health and integrity of freshwater ecosystems. |
doi_str_mv | 10.1007/s13530-024-00211-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3062682507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3062682507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-5d3f70a4ca99da71e5dab813b8402008d5b0aed6c0bac9e44476429d6caf58c23</originalsourceid><addsrcrecordid>eNp9UE1LA0EMXURBUf-ApwHPq5mP_TpK_QTBi56HdCdtt9SZdTIt9t87taI3AyEhee-FvKK4kHAlAZprlrrSUIIyJYCSspQHxYlSWpdN05rD3ANUZddU6rg4Z15CDlMrWXcnxfblc3CYhg0JTpGYc8G0ZoHe5UxD-N3n7Rg8E4vBC0_BYyKxocg7tFuvkrjFceEHFO849yjocwxMTqQgxrDactpG8iRWhP0iU8-KoxmumM5_6mnxdn_3Onksn18eniY3z2Wva53KyulZA2h67DqHjaTK4bSVetoayH-1rpoCkqt7mGLfkTGmqY3q8gBnVdsrfVpc7nXHGD7WxMkuwzr6fNJqqFXdqgqajFJ7VB8Dc6SZHePwjnFrJdidy3bvss0u22-XrcwkvSdxBvs5xT_pf1hf7iuCcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3062682507</pqid></control><display><type>article</type><title>Oxidative stress status and antioxidative responses in neonate versus adult Daphnia magna exposed to polystyrene leachate</title><source>SpringerLink Journals - AutoHoldings</source><creator>Esterhuizen, Maranda ; Monticelli, Michela ; Lee, Sang-Ah ; Kim, Youngsam ; Pflugmacher, Stephan ; Kim, Young Jun</creator><creatorcontrib>Esterhuizen, Maranda ; Monticelli, Michela ; Lee, Sang-Ah ; Kim, Youngsam ; Pflugmacher, Stephan ; Kim, Young Jun</creatorcontrib><description>Objective
Plastic pollution, particularly polystyrene, significantly threatens aquatic ecosystems worldwide. Furthermore, plastic leachates have been documented to be detrimental to some aquatic organisms; however, understanding the toxicity mechanism remains limited. This study aimed to investigate the ecotoxicological effects of polystyrene leachate on neonate and adult
Daphnia magna
, a keystone species in freshwater ecosystems.
Methods
The effects of the leachate were studied by employing the novel technique of separating daphnids from the polystyrene microplastic fragments via dialysis tubing, which was prepared 24 and 72 h before organism exposure. Acute toxicity was assessed as effects on organism mobility, oxidative stress (reactive oxygen species), antioxidative enzyme responses (superoxide dismutase and catalase), as well as the effects on the biotransformation enzyme glutathione S-transferase’s activity.
Results
Under the experimental conditions, the mobility and oxidative status of the daphnids were unaffected, irrespective of the organisms’ age or leaching time. In adults exposed for 24 h, the antioxidant defense enzyme activities were elevated, contributing to cellular homeostasis maintenance. However, the catalase activity was reduced for neonates and adults exposed to the prolonged pre-leached treatment, thus making them less capable of retaining homeostasis when exposed to toxicant mixtures.
Conclusion
This study highlights the vulnerability of
D. magna
to polystyrene leachate and underscores the need for continued research on the ecotoxicological effects of plastic pollution in aquatic ecosystems. Findings from this investigation contribute to understanding the ecological consequences of plastic pollution, which can inform mitigation strategies and policy decisions to preserve the health and integrity of freshwater ecosystems.</description><identifier>ISSN: 2005-9752</identifier><identifier>EISSN: 2233-7784</identifier><identifier>DOI: 10.1007/s13530-024-00211-1</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Acute toxicity ; Adults ; Aquatic ecosystems ; Aquatic organisms ; Biomedical and Life Sciences ; Biomedicine ; Biotransformation ; Catalase ; Daphnia magna ; Dialysis ; Ecological effects ; Ecosystem integrity ; Ecosystems ; Ecotoxicology ; Environmental Health ; Enzymatic activity ; Enzymes ; Exposure ; Freshwater ecosystems ; Glutathione ; Glutathione transferase ; Homeostasis ; Keystone species ; Leachates ; Leaching ; Microplastics ; Mobility ; Neonates ; Organisms ; Original Article ; Oxidative stress ; Pharmacology/Toxicology ; Plastic pollution ; Plastics ; Pollution ; Polystyrene ; Polystyrene resins ; Reactive oxygen species ; Superoxide dismutase ; Toxicants ; Toxicity</subject><ispartof>Toxicology and environmental health sciences, 2024, Vol.16 (2), p.171-179</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-5d3f70a4ca99da71e5dab813b8402008d5b0aed6c0bac9e44476429d6caf58c23</citedby><cites>FETCH-LOGICAL-c363t-5d3f70a4ca99da71e5dab813b8402008d5b0aed6c0bac9e44476429d6caf58c23</cites><orcidid>0000-0002-2342-3941 ; 0000-0001-9405-9975 ; 0000-0002-3963-6722 ; 0000-0003-1052-2905 ; 0000-0003-2605-0922</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13530-024-00211-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13530-024-00211-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Esterhuizen, Maranda</creatorcontrib><creatorcontrib>Monticelli, Michela</creatorcontrib><creatorcontrib>Lee, Sang-Ah</creatorcontrib><creatorcontrib>Kim, Youngsam</creatorcontrib><creatorcontrib>Pflugmacher, Stephan</creatorcontrib><creatorcontrib>Kim, Young Jun</creatorcontrib><title>Oxidative stress status and antioxidative responses in neonate versus adult Daphnia magna exposed to polystyrene leachate</title><title>Toxicology and environmental health sciences</title><addtitle>Toxicol. Environ. Health Sci</addtitle><description>Objective
Plastic pollution, particularly polystyrene, significantly threatens aquatic ecosystems worldwide. Furthermore, plastic leachates have been documented to be detrimental to some aquatic organisms; however, understanding the toxicity mechanism remains limited. This study aimed to investigate the ecotoxicological effects of polystyrene leachate on neonate and adult
Daphnia magna
, a keystone species in freshwater ecosystems.
Methods
The effects of the leachate were studied by employing the novel technique of separating daphnids from the polystyrene microplastic fragments via dialysis tubing, which was prepared 24 and 72 h before organism exposure. Acute toxicity was assessed as effects on organism mobility, oxidative stress (reactive oxygen species), antioxidative enzyme responses (superoxide dismutase and catalase), as well as the effects on the biotransformation enzyme glutathione S-transferase’s activity.
Results
Under the experimental conditions, the mobility and oxidative status of the daphnids were unaffected, irrespective of the organisms’ age or leaching time. In adults exposed for 24 h, the antioxidant defense enzyme activities were elevated, contributing to cellular homeostasis maintenance. However, the catalase activity was reduced for neonates and adults exposed to the prolonged pre-leached treatment, thus making them less capable of retaining homeostasis when exposed to toxicant mixtures.
Conclusion
This study highlights the vulnerability of
D. magna
to polystyrene leachate and underscores the need for continued research on the ecotoxicological effects of plastic pollution in aquatic ecosystems. Findings from this investigation contribute to understanding the ecological consequences of plastic pollution, which can inform mitigation strategies and policy decisions to preserve the health and integrity of freshwater ecosystems.</description><subject>Acute toxicity</subject><subject>Adults</subject><subject>Aquatic ecosystems</subject><subject>Aquatic organisms</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Biotransformation</subject><subject>Catalase</subject><subject>Daphnia magna</subject><subject>Dialysis</subject><subject>Ecological effects</subject><subject>Ecosystem integrity</subject><subject>Ecosystems</subject><subject>Ecotoxicology</subject><subject>Environmental Health</subject><subject>Enzymatic activity</subject><subject>Enzymes</subject><subject>Exposure</subject><subject>Freshwater ecosystems</subject><subject>Glutathione</subject><subject>Glutathione transferase</subject><subject>Homeostasis</subject><subject>Keystone species</subject><subject>Leachates</subject><subject>Leaching</subject><subject>Microplastics</subject><subject>Mobility</subject><subject>Neonates</subject><subject>Organisms</subject><subject>Original Article</subject><subject>Oxidative stress</subject><subject>Pharmacology/Toxicology</subject><subject>Plastic pollution</subject><subject>Plastics</subject><subject>Pollution</subject><subject>Polystyrene</subject><subject>Polystyrene resins</subject><subject>Reactive oxygen species</subject><subject>Superoxide dismutase</subject><subject>Toxicants</subject><subject>Toxicity</subject><issn>2005-9752</issn><issn>2233-7784</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9UE1LA0EMXURBUf-ApwHPq5mP_TpK_QTBi56HdCdtt9SZdTIt9t87taI3AyEhee-FvKK4kHAlAZprlrrSUIIyJYCSspQHxYlSWpdN05rD3ANUZddU6rg4Z15CDlMrWXcnxfblc3CYhg0JTpGYc8G0ZoHe5UxD-N3n7Rg8E4vBC0_BYyKxocg7tFuvkrjFceEHFO849yjocwxMTqQgxrDactpG8iRWhP0iU8-KoxmumM5_6mnxdn_3Onksn18eniY3z2Wva53KyulZA2h67DqHjaTK4bSVetoayH-1rpoCkqt7mGLfkTGmqY3q8gBnVdsrfVpc7nXHGD7WxMkuwzr6fNJqqFXdqgqajFJ7VB8Dc6SZHePwjnFrJdidy3bvss0u22-XrcwkvSdxBvs5xT_pf1hf7iuCcQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Esterhuizen, Maranda</creator><creator>Monticelli, Michela</creator><creator>Lee, Sang-Ah</creator><creator>Kim, Youngsam</creator><creator>Pflugmacher, Stephan</creator><creator>Kim, Young Jun</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2342-3941</orcidid><orcidid>https://orcid.org/0000-0001-9405-9975</orcidid><orcidid>https://orcid.org/0000-0002-3963-6722</orcidid><orcidid>https://orcid.org/0000-0003-1052-2905</orcidid><orcidid>https://orcid.org/0000-0003-2605-0922</orcidid></search><sort><creationdate>2024</creationdate><title>Oxidative stress status and antioxidative responses in neonate versus adult Daphnia magna exposed to polystyrene leachate</title><author>Esterhuizen, Maranda ; Monticelli, Michela ; Lee, Sang-Ah ; Kim, Youngsam ; Pflugmacher, Stephan ; Kim, Young Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-5d3f70a4ca99da71e5dab813b8402008d5b0aed6c0bac9e44476429d6caf58c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acute toxicity</topic><topic>Adults</topic><topic>Aquatic ecosystems</topic><topic>Aquatic organisms</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Biotransformation</topic><topic>Catalase</topic><topic>Daphnia magna</topic><topic>Dialysis</topic><topic>Ecological effects</topic><topic>Ecosystem integrity</topic><topic>Ecosystems</topic><topic>Ecotoxicology</topic><topic>Environmental Health</topic><topic>Enzymatic activity</topic><topic>Enzymes</topic><topic>Exposure</topic><topic>Freshwater ecosystems</topic><topic>Glutathione</topic><topic>Glutathione transferase</topic><topic>Homeostasis</topic><topic>Keystone species</topic><topic>Leachates</topic><topic>Leaching</topic><topic>Microplastics</topic><topic>Mobility</topic><topic>Neonates</topic><topic>Organisms</topic><topic>Original Article</topic><topic>Oxidative stress</topic><topic>Pharmacology/Toxicology</topic><topic>Plastic pollution</topic><topic>Plastics</topic><topic>Pollution</topic><topic>Polystyrene</topic><topic>Polystyrene resins</topic><topic>Reactive oxygen species</topic><topic>Superoxide dismutase</topic><topic>Toxicants</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Esterhuizen, Maranda</creatorcontrib><creatorcontrib>Monticelli, Michela</creatorcontrib><creatorcontrib>Lee, Sang-Ah</creatorcontrib><creatorcontrib>Kim, Youngsam</creatorcontrib><creatorcontrib>Pflugmacher, Stephan</creatorcontrib><creatorcontrib>Kim, Young Jun</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Toxicology and environmental health sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esterhuizen, Maranda</au><au>Monticelli, Michela</au><au>Lee, Sang-Ah</au><au>Kim, Youngsam</au><au>Pflugmacher, Stephan</au><au>Kim, Young Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxidative stress status and antioxidative responses in neonate versus adult Daphnia magna exposed to polystyrene leachate</atitle><jtitle>Toxicology and environmental health sciences</jtitle><stitle>Toxicol. Environ. Health Sci</stitle><date>2024</date><risdate>2024</risdate><volume>16</volume><issue>2</issue><spage>171</spage><epage>179</epage><pages>171-179</pages><issn>2005-9752</issn><eissn>2233-7784</eissn><abstract>Objective
Plastic pollution, particularly polystyrene, significantly threatens aquatic ecosystems worldwide. Furthermore, plastic leachates have been documented to be detrimental to some aquatic organisms; however, understanding the toxicity mechanism remains limited. This study aimed to investigate the ecotoxicological effects of polystyrene leachate on neonate and adult
Daphnia magna
, a keystone species in freshwater ecosystems.
Methods
The effects of the leachate were studied by employing the novel technique of separating daphnids from the polystyrene microplastic fragments via dialysis tubing, which was prepared 24 and 72 h before organism exposure. Acute toxicity was assessed as effects on organism mobility, oxidative stress (reactive oxygen species), antioxidative enzyme responses (superoxide dismutase and catalase), as well as the effects on the biotransformation enzyme glutathione S-transferase’s activity.
Results
Under the experimental conditions, the mobility and oxidative status of the daphnids were unaffected, irrespective of the organisms’ age or leaching time. In adults exposed for 24 h, the antioxidant defense enzyme activities were elevated, contributing to cellular homeostasis maintenance. However, the catalase activity was reduced for neonates and adults exposed to the prolonged pre-leached treatment, thus making them less capable of retaining homeostasis when exposed to toxicant mixtures.
Conclusion
This study highlights the vulnerability of
D. magna
to polystyrene leachate and underscores the need for continued research on the ecotoxicological effects of plastic pollution in aquatic ecosystems. Findings from this investigation contribute to understanding the ecological consequences of plastic pollution, which can inform mitigation strategies and policy decisions to preserve the health and integrity of freshwater ecosystems.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s13530-024-00211-1</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2342-3941</orcidid><orcidid>https://orcid.org/0000-0001-9405-9975</orcidid><orcidid>https://orcid.org/0000-0002-3963-6722</orcidid><orcidid>https://orcid.org/0000-0003-1052-2905</orcidid><orcidid>https://orcid.org/0000-0003-2605-0922</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2005-9752 |
ispartof | Toxicology and environmental health sciences, 2024, Vol.16 (2), p.171-179 |
issn | 2005-9752 2233-7784 |
language | eng |
recordid | cdi_proquest_journals_3062682507 |
source | SpringerLink Journals - AutoHoldings |
subjects | Acute toxicity Adults Aquatic ecosystems Aquatic organisms Biomedical and Life Sciences Biomedicine Biotransformation Catalase Daphnia magna Dialysis Ecological effects Ecosystem integrity Ecosystems Ecotoxicology Environmental Health Enzymatic activity Enzymes Exposure Freshwater ecosystems Glutathione Glutathione transferase Homeostasis Keystone species Leachates Leaching Microplastics Mobility Neonates Organisms Original Article Oxidative stress Pharmacology/Toxicology Plastic pollution Plastics Pollution Polystyrene Polystyrene resins Reactive oxygen species Superoxide dismutase Toxicants Toxicity |
title | Oxidative stress status and antioxidative responses in neonate versus adult Daphnia magna exposed to polystyrene leachate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A47%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxidative%20stress%20status%20and%20antioxidative%20responses%20in%20neonate%20versus%20adult%20Daphnia%20magna%20exposed%20to%20polystyrene%20leachate&rft.jtitle=Toxicology%20and%20environmental%20health%20sciences&rft.au=Esterhuizen,%20Maranda&rft.date=2024&rft.volume=16&rft.issue=2&rft.spage=171&rft.epage=179&rft.pages=171-179&rft.issn=2005-9752&rft.eissn=2233-7784&rft_id=info:doi/10.1007/s13530-024-00211-1&rft_dat=%3Cproquest_cross%3E3062682507%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3062682507&rft_id=info:pmid/&rfr_iscdi=true |